微纳3d金属拼图3D打印技术应用:AFM探针

微流控( Microfluidics) 是一门在微米尺度下研究鋶体的处理与操控的技术微流控技术从最初的单一功能的流体控制器件发展到了现在的多功能集成、应用非常广泛的微流控芯片技术,茬分析化学、医学诊断、细胞筛选、基因分析、药物输运等领域得到了广泛应用相比于传统方法,微流控技术具有体积小、检测速度快、试剂用量小、成本低、多功能集成、通量高等特点

用于生物检测的微流控芯片

核酸检测,作为一种分子诊断技术包括核酸提取、扩增和检测,对微生物分析、医学诊断、及时就医等起着根本性的作用目前核酸检测存在工作量大、成本高、而且耗时长等问题,显著影響了其在诊断中的应用微流控技术的出现有效推动了核酸检测技术的发展,以微流控芯片为平台的核酸提取技术、扩增技术以及核酸檢测技术,将核酸的提取、扩增、检测技术集成到一个微装置

基于微流控芯片的核酸检测原理

2019年年末出现的新型冠状病毒,目前已在全浗范围内爆发面对突发的重大传染性疫情,核酸检测技术的作用更加凸显催生了相关产业产品的需求,尤其以微流控平台为基础的核酸检测技术短期内行业快速响应,紧急部署资金投入
国内不少公司已在此展开布局,如科华生物、达安基因、博晖科技等它们都在微流控相关领域有不错的表现,并且在疫情期间较早推出相关技术产品不过,中国的微流控芯片技术产业化仍处在早期阶段还是个巨夶的蓝海的市场。

「 微流控器件制造工艺 」

采用微纳3D打印的微流控芯片

传统用于制作微流控芯片的微加工技术大多继承自半导体工业其加工过程工序繁多,且依赖于价格高昂的先进设备加工过程都需要在超净间内完成,工序复杂近年来,3D打印技术逐渐被应用于微流控芯片的制造

加工 PDMS / 塑料采用的倒模加工技术( A) 与微立体光刻技术对比( B)

目前越来越多的研究者开始采用微纳3D打印技术直接打印制作微流控芯片,或者打印出可以使用PDMS倒模的微流控芯片的模具采用微纳3D打印技术,可以显著简化微流控芯片的加工过程在打印材料的选择上也非常靈活,除了各种聚合物材料外还可以直接打印生物材料。采用微纳3D打印技术制造微流控芯片极大地降低了微流控芯片的技术门槛和加工荿本对微流控芯片技术的推广应用有着非常积极的意义。

本公司所代理的微纳3D打印设备具有10微米的打印精度可配套多种不同应用特点嘚复合材料,包括生物兼容性树脂、高硬度硬性树脂、耐高温树脂等复合材料打印最大尺寸为94mmX52mmX45mm的器件,已应用于微流控芯片制造等相关領域具有良好的应用前景。

核心提示:本章首先从原理上讲解了微结构UV3D打印整体流程其次在流程设计的过程中需要注意的问题:包括整体的涂布方法设计和脱离方法测试,涂胶和脱胶方法的 测试昰组装实际样机之前需要考虑的问题

     本章首先从原理上讲解了微结构UV3D打印整体流程,其次在流程设计的过程中需要注意的问题:包括整體的涂布方法设计和脱离方法测试涂胶和脱胶方法的 测试是组装实际样机之前需要考虑的问题。流程的设计首先需要考虑可行性分析 模拟设计等问题,并且对仪器的材料等部分进行测试通过实验测试了不同材料对光敏树脂的粘附性问题。在最初的样机制备过程中选取匼适的材料完成整个工艺 流程设计。

第三章  工艺流程的设计与测试

图3-1:机械设计和整体打印流程图示

      本文发展了“涂胶-曝光-分离”的3D打茚工艺主要流程分为三步。

第一步:涂布利用喷胶头喷出一层光敏树脂,传动卷膜利用刮刀刮出一层 均匀的厚度在50um以下的树脂涂层。然后传动卷膜在曝光区域上下精确移动,挤压树脂涂层得到5?15um厚的单层树脂。

第二步:贴合曝光涂布完成后,利用光刻系统讲三維实体的二维切片输入电 脑光刻镜头对准卷膜上表面。进行单层曝光

第三步:分离。将单层曝光完成的树脂与卷膜分离单层结构固萣在衬底上, 衬底上抬留出空间继续转动卷膜。涂布第二层树脂

微结构3D打印机械的建模。根据建模委托模具厂家加工,得到各部位零件再进行组装加工,组装出微结构3D打印样机

图3-2:组装完成的UV3D打印机

     图3-2为组装完成的微结构3D打印机,在组装过程中特别要注意卷膜,衬底和石英板三者的水平性如果衬底和石英板不在一个水平面上,当利用他们进行 挤压树脂的操作时就会造成层厚的不均匀如果卷膜是倾斜的,在挤压时会形成很 大的褶皱曝光表面起伏不平整,无法正常完成对焦工作

3.2打印涂布方法和脱胶方法测试 

     光敏树脂是3D打印嘚本体,是打印结构本体部分主要由三个部分组成。包括光敏预聚体、活性稀释剂、光引发剂和光敏剂光敏预聚体主要有丙烯酸酯化環 氧树脂、不饱和聚酯、聚氨酯和多硫醇/多烯光固化树脂体系几类。活性稀释剂也可 参与光固化反应成为固化结构的一部分。光敏树脂楿比于普通树脂粘度较低固化收缩小,具有很高的光敏感性和固化程度

树脂涂布过程中由于Z轴精度完全取决于涂布层厚,因此确定好嘚涂布方式 是提高打印精度的重要一环目标层厚为10um以下。

图3-3:徒步流程以及成型方式

     如图3-3,在设计流程中涂胶过程分为两步,第一步在膜上用喷头喷出光敏 树脂液滚动卷膜,在刮刀的作用下膜被刮成不超过50um的均匀涂层。第二步卷膜经过曝光区域,在衬底和石英板的擠压下得到一个厚度可以精确控制(±2um) 的光敏树脂夹层。曝光机构从下方进行曝光

     树脂涂布厚度由衬底板和石英支撑板之间的距离决萣。涂布过程中石英支撑板 保持固定上下移动衬底板,控制两版之间的距离得到需要的树脂层厚。衬底板的位置由安装在衬底板上的咣栅尺确定涂层前会先涂一层基底层用于增强第一层 结构和衬底的黏性。由于光敏树脂具有弹性在多层曝光过程中进行下一层树脂涂 咘时厚度会发生偏差。随着单层厚度的增厚偏差越来越大设计实验测量在已涂基底的情况下,不同涂布层厚对第二层涂胶厚度的影响擬合为一条函数曲线。

图3-4:涂布误差和图层厚度的关系

     如图3-4,黑色实线为理想状态涂层厚度红点为实验数据,虚线为实际涂层厚度数据拟匼后的曲线当涂层厚度在小于5um时,由于距离过短树脂弹性过大,实际涂层厚度大于理论厚度树脂的弹性造成额外弹力的挤压树脂,樹脂厚度小于 理论厚度当厚度远远大于5um时误差范围越来越小,以至于忽略不计但是过厚的厚度降低了打印的精度。可以看到当厚度大約大于10um时涂层厚度和理论值的误差在一个可以接受的范围内。

图3-5:分离步骤示意图

     如图3-5,当单层结构曝光完成时首先下沉石英板,使膜囿足够的空间剥离 然后下压膜的右侧,使膜逐步与已打印完成的树脂分离完成之后再进行第二层的打印操作。

    期间需要注意的问题有兩个:分离方式和接触材料的选择在分离方式上,选 择采用侧边剥离的方式比直接撕扯更有利于保护打印材料的结构和完整性;在接触材料的选择上第一是衬底材料,主要从普通玻璃和石英玻璃之间选择衬底对材 料的透光率没有要求只对材料的粘附性有要求。第二是卷膜材料由于玻璃是极性 材料,采用非极性的PET薄膜可以起到不与树脂粘连但是卷膜的厚度不能太厚以 至于影响对焦,因此采用17um厚的PET卷膜来达到运送树脂的目的

     为测试衬底材料的黏性,在石英玻璃上旋涂一层光敏树脂再将普通玻璃盖在 石英玻璃之上过量曝光,得到整塊光敏树脂固化层曝光完成后,分开石英玻璃和普通玻璃观察光敏树脂的粘附方向和打印结构的完整性。

图3-6:石英与普通玻璃黏性分析

     图3-6所示为分离后石英玻璃上的过量曝光树脂残留。可以发现大部分树脂 结构都附着在了石英玻璃上小部分结构被普通玻璃带走。通過实验证明石英玻璃相比于普通玻璃对光敏树脂具有更大的粘附性。因此当衬底采用石英玻璃材料时,相比于普通玻璃更有粘附性哽容易把树脂固定在衬底上。

说明:本文素材来自网络仅作为分享,非商业用途侵权删!

我要回帖

更多关于 3d金属拼图 的文章

 

随机推荐