微纳金属3D打印技术应用:AFM探针?

因具有高分辨率、可实现复杂结构精细打印的特点,DLP光固化3D打印技术已在生物制造领域大放异彩。目前,其已被用于多种组织的重建或修复研究,包括脊髓、周围神经、血管等。现行DLP生物制造研究主要在体外进行组织的构建,经过一定时间培养后植入体内,这往往会造成二次创伤。若能通过微创方式在皮下直接进行3D打印将大大降低医源性创伤带来的风险。

通常,DLP墨水的光引发剂需要通过紫外、蓝光或可见光激发(图1)。这些光波的组织穿透能力差,难以实现皮下固化。波长780~2526nm的不可见近红外(NIR)光可以穿透深层组织,并已用于药物控释、光动力疗法、光热疗法、体内成像等,是一种广泛使用的组织穿透性光波。若想实现NIR固化生物墨水,就需要适配的光引发剂。上转换材料可将近红外光转化为紫外/可见光,将其与普通DLP光引发剂结合使用即可实现生物墨水的NIR固化。

近日,四川大学的苟马玲研究员、钱志勇教授和魏霞蔚教授团队通过蓝光引发剂LAP包裹上转换纳米粒子制备了核-壳结构纳米光引发剂(UCNP@LAP)。依托该光引发剂开创性地实现了皮下原位DLP打印。相关研究论文:Noninvasive in vivo

图1 光固化生物打印常用光引发剂及其激发波段

图2 基于UCNP@LAP核-壳结构纳米光引发剂的近红外皮下DLP打印

上转换材料是一种能实现上转换发光的材料。所谓上转换发光,指的是材料受到低能量的光激发,发射出高能量的光,即将吸收的长波长、低频率光转换为短波长、高频率光。

上转换材料由无机基质及镶嵌在其中的稀土掺杂离子组成,通过调节无机基质及掺杂稀土离子组成、比例可将近红外激发光转化为紫外或可见光。

研究人员通过改进的方法合成了水性上转换材料纳米粒子(UCNPs),该上转换纳米粒子可在水溶液中稳定分散且表面带正电荷,通过与带负电荷LAP间的静电吸附作用制备了核-壳结构的UCNP@LAP纳米光引发剂(图3A)。与上转换材料/LAP直接混合相比,这种核-壳结构有效提高了近红外光的激发效率。同时,由于LAP的包裹,UCNP发射出的紫外光被LAP屏蔽吸收(图3D),降低了对细胞的损伤。

模拟皮下DLP打印测试


  • AFM长篇综述:软物质/软材料的3D打印

  • 高精度3D打印聚合物生物支架定制

  • 高精度3D打印水凝胶生物支架定制

  • 3D打印构建全血管网络及肿瘤-血管相互作用初探
  • 生物3D打印-从形似到神似
  • 3D打印助力骨科精准临床应用:临床案例解

  • 多尺度3D打印高生物相容性及力学强度兼具的组织工程支架

微纳金属3D打印是在原子力显微镜平台上通过微流控制技术和电化学的方法实现微纳金属3D结构成型。可以在70微米的成型空间相当于人的头发丝截面内完成打印,且具备一定的机械性能。可实现2微米细节,可打印材料包括金,银,铜,铂等。


在直径0.06mm的头发上进行金属3D打印相信很多人听了都觉得不可思议无法完成,什么机器可以完成在头发丝上进行打印?现在跟大家介绍一下这款亚微米分辨率的金属 3D打印机, 由Exaddon AG开发的CERES系统可在环境条件下直接3D打印金属。该系统通过增材制造来构建亚微米分辨率的复杂结构,从而在微电子,MEMS和表面功能化等领域开辟了新视野。


CERES系统的示意图。该系统由直观的操作员软件控制,位于防震台上。控制器硬件位于桌子下方。



逐个体素和逐层执行打印过程,该过程允许90° 悬垂结构和独立式结构。金属打印工艺是基于体素的。体素定义为基本3D 块。体素以定义的坐标逐层堆叠,形成所需的2D或3D

几何形状。没有支撑结构的独立式结构和90°悬垂角度是可行的,带来了真正的设计自由度。通过离子尖偏转的实时反馈使打印过程自动化。当体素到达完成时,体素的顶侧与尖端相互作 用,使悬臂偏转微小量。该过程非常类似于以接 触模式运行的AFM悬臂。如果达到用户定义的偏转阈值,则将体素视为已打印。然后将尖端快速 缩回至安全的行进高度,然后移至下一个体素。

悬臂的体素坐标,打印压力和挠曲阈值在csv文件中指定。该文件已加载到打印机的操作员软件中。csv文件由Exaddon提供的设计助手(即所谓的Voxel Cloud Generator)生成。或者,可以通过任何能够导出纯文本文件的第三方软件来生成文件。


建立, 用于打印结构的电化学装置。稳压器施加电压以控制还原反应。体素由离子溶液构成,通过微流体压力控制器将离子溶液从离子尖端中推出,该微流体压力控制器以小于1mbar的精度调节施加的压力。在恒电位仪施加的适当电压下,还原反应将金属离子转化为固体金属。客户定义的离子溶液以及Exaddon提供的离子墨水可用于保证打印质量。离子溶液的一个例子是硫酸铜(CuSO4)在硫酸 (H2SO4)中的溶液。在工作电极上发生以下反 应:Cu2 +(aq)+ 2e-→Cu(s)。


像大多数电镀技术一样,电解池也需要导电液槽才能工作。在这种情况下,打印室将在pH = 3的水中充满硫酸,以使电流流动。对于在其上发生沉积的工作电极需要导电表面。稳压器控制用户定义的电位,并通过石墨对电极在电化学电池中提供电流。Ag / AgCl参比电极用

于测量工作电极电势。将所有电极浸入支持电解质中。两个高分辨率摄像头(顶视图和底视图)可实现离子头装载,打印机设置和打印结构的可视化。内置了计算机辅助对齐功能,可以在现有结构上进行打印。用于在例如芯片表面上预定义的电极上打印。该软件在打印期间和之后向用户提供每个体素遇到的成功,失败或困难的反馈。CERES系统还执行其他过程,例如2D纳米光刻和纳米颗粒沉积。该系统开放且灵活,因此用户也可以设计定制的沉积工艺。CERES系统是用于学术和工业研究的有前途的工具。它在微米级金属结构的增材制造中提供了空前的成熟度和控制能力。

目前微纳金属3D打印更多应用在微纳米加工、微纳结构研究、太赫兹芯片、微电路修复、微散热结构、微米高频天线、微观雕塑等领域,让这些领域中很多不可能变成了可能。更多关于3D打印的介绍请搜索关注云尚智造,欢迎您来咨询交流。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

我要回帖

更多关于 金属探针 的文章

 

随机推荐