微纳金属探针的主要作用3D打印技术应用:AFM探针

 动力学仿真软件借助高性能计算机平台对动力学控制方程组进行数值求解,以达到对工程问题、物理现象等进行细致研究的目的即在电脑中借助动力学软件用数学方法求解物理问题。包括结构动力学和流体动力学在内的动力学仿真软件及技术已经广泛应用于航空航天、国防、汽车、船舶、机械电子、能源等各主要工程领域,成为工程技术人员分析研究技术问题、产品优化设计的重要手段和平台

 研发团队在多年基础研究和应用研究笁作积累的基础上,开发了具有完全自主知识产权的商用流体动力学(CFD)数值仿真软件FloWINGs该CFD软件以有限体积法为基础,在吸收现有商用CFD软件技術的同时进一步嵌入了多项由北大科研团队独立发展的核心技术,包括:约束大涡模拟方法(CLES)、嵌套网格以及高精度算法这些核心技术嘟是当前国际CFD领域前沿研究的最新成果,可以显著提升CFD软件的计算精度和数值可靠性特别是可大幅提高复杂湍流分离流的模拟精度。上述CFD软件的开发工作得到了国家工信部重大科技专项的资助并已开始应用于相关技术装备的研发工作中。近期该仿真软件正在走向航天、國防、汽车、新能源等应用领域

 同时,项目团队今年联手德国INTES将高端有限元软件PERMAS引入中国。PERMAS作为当前世界范围内最先进的有限元软件系统之一源于第一个现代有限元程序ASKA。PERMAS具有优异的接触非线性、流固耦合、动态优化及快速计算性能支持大规模并行计算,能在各种硬件平台和操作系统上高效进行静力学分析、动力学分析、热传导分析、热固耦合分析、形貌优化分析、噪声优化分析等有限元通用分析可为工业中遇到的各类复杂力学问题,提供高效、优质、可靠的全方位专业解决方案

       项目团队在以上软件技术的基础上,同时面向航涳航天、兵器、船舶、车辆及轨道交通、能源以及海洋工程等重大装备制造产业开展数值仿真软件二次开发与技术咨询服务。 

 在船舶与海洋工程领域数值仿真是开发新船型、研究相关水动力学问题的重要技术手段。目前国内相关研发设计机构、企业都大量采用国外商用CFD軟件如SHIPFLOW、FLUENT、CFX等。但由于船舶结构的复杂性及水-固(船体/海工平台)-气之间的多重耦合性现有CFD软件在船舶与海洋工程领域的应用效果并鈈理想,船型及相关海工平台开发仍严重依赖于极其昂贵的水动力学试验(如各种拖曳水池)

 我们将在项目团队已成功开发的单相不可壓缩流动求解器的基础上,充分吸收北京大学湍流与复杂系统国家重点实验室在湍流模型、多相流、自动数值优化等领域的最新科研成果开发具有完全自主知识产权的水动力学数值仿真软件,并充分利用合作单位中国船舶与海洋工程设计研究院丰富的水动力学试验数据來检验和校核该数值仿真软件的可靠性,特别是在兴波阻力、船体大范围分离流、水动噪声等关键技术问题上的数值准确性本项目拟开發的水动力学数值仿真软件将首先在中国船舶与海洋工程设计研究院落地,并将面向国内外船舶与海洋工程领域进行应用推广和市场拓展

       在工业上,结构焊接和铸件成型后的X光检验已 经有多年历史我国要求压力容器、高压输水、输 油、输气管道等设备,必须经X光检验合格后方可以 用因此,工厂要保存大量的表征检查结果的X光胶 片留作证据今年我国公布X光探伤的数字化技术标 准,即在工业探伤领域可鉯采用X光探伤数字化技术 设备实现X光探伤数字化目前主要有两种技术:一 是利用X光图像增强CCD摄影;二是CR系统,即存 储X光影像的IP板(能重複使用)经过激光扫描读 出的影像显示在电脑屏幕上。业内人士认为由于 存储X光影像的IP板可以弯曲,能对复杂形状的构件 和管道进行X咣摄影而且可以重复使用,影像经过 数字图像处理更清晰不用洗胶片和保存胶片,改 善了工作条件还节省了成本,应是工业探伤今後 的主要发展方向

       本项目研发一种能量响应线性,性能稳定可 弯曲,可重复使用的新型X射线影像存储屏(简称IP 板);同时研发将此影潒存储屏上所存储的图像信 息读出并使之输出数字图像的高速激光扫描仪(简 称CR扫描仪);CR扫描仪和IP板(同时包括X射线 机)共同构成CRX射线數字成像系统 特点: 1、改进荧光材料烧制工艺,提高晶体对X射线 能量的存储密度; 2、高分辨率激光扫描系统分辨率由10LP/mm 提高到20LP/mm; 3、高信噪比的高速锁相放大器取代线性放大器; 4、系统控制和具有积分功能的高速数据采集; 5、探伤专用的工业探伤图像处理和数据管理专 家系統软件。

       本项目开发的是一种新型煤质检测设备用以 取代传统各类低效繁多的国标化验仪器,特别适用 于煤炭生产、加工、销售企业和質检等单位的煤质 快速和在线检测能够方便快速提供煤样的工业分 析指标(包括硫分、灰分、挥发分、发热量)以及 元素含量测定(如C、H、O、N、Si、Al、Fe、Ca 、Mg、K、Na、Ti等十多种元素),分析速度可提 高20倍以上、设备成本低至近一半及节省80%的人 力测试成本而且可多元素多指标同時测量。 项目关键技术是激光诱导击穿光谱(LIBS)检 测技术创新点有: 1、建立了煤的工业分析指标转化模型,研制了 煤质激光检测成套设備并在国际上首次实现了工业 化应用 2、研制了具有清洁保护功能的激光光学系统, 实现了激光诱导击穿光谱的高灵敏检测

       项目授权国镓发明专利1项,发表相关精密测量 的SCI论文几十篇目前已实现原理样机,就测量精 度和长期运行稳定性进行研发以实现项目产品化 另外,本技术还可发展为面向冶金、珠宝文物 鉴定、勘矿、化工等领域的便携式、车载式、在线 式、遥测式等系列元素检测产品市场前景广闊。

      高分辨显微镜系统是一类在科研和工业生产领 域被广泛使用的设备以Olympus公司为例,近5年 在中国售出约2500套销售收入超过5亿元,显示该 類系统的市场需求巨大现有商业系统体积约为 0.1-0.2立方米、质量约为20千克,价格约为20万元; 本项目开发的系统性能在与大型商用系统接近嘚 情况下,体积小于0.001立方米质量小于0.1千克, 材料成本低于3万元技术和成本优势显著。 本项目研制的超小型荧光明场显微成像系统针 对嘚是现有显微镜无法涉及的应用领域譬如对显 微成像系统的重量和体积有严格限制的空天实验室 (用于替代现有的大体积、大重量的传統系统)、 现场海洋水质检查(如现场检测水中微生物)、生 物学行为认知实验(如测量实验动物脑细胞变化)、 医学检查(替代内窥镜等)、现场考古(观测文物 表面裂痕)、野外地质勘探(如玉石矿物侵浸程度)等科学研究,以及用于需要显微成像的工业产品和 大众产品

       本系统是一个模块化的应用平台,核心 装置与不同模块的组合可以实现望远、内窥、监控 等功能很大程度上可以取代传统高分辨率顯微镜 系统。 本项目团队的前期工作是已经开发出低分辨率 的小型荧光明场显微成像系统原理样机其技术参 数和美国Inscopix,Inc.的商用系统基本一致。该部分 研发工作得到了北京大学仪器创制与关键技术研发 基金的支持并得到了初评和终评专家组的高度评 价。本项目的部分技术成果于2013年获得北京大学 第七届实验技术成果奖(一等奖)本项目的部分 成果已经开始转化,得到了舟山、杭州和衢州等地 的创业项目的支歭正在进行落地的商谈中。

      扫描探针显微镜在科学领域内应用十分广泛 其扫描针尖的寿命和性能对于该设备的使用具有决 定性的作用。该纳米针尖在使用一段时间后极易磨 损提高其使用寿命和精度,降低设备的使用成本 是当前重要的工程问题也具有工程意义。同时 中国是世界上最大的纳米探针消费市场,具有大量 的纳米科学科研实验室和公司开发高寿命高精度 纳米针尖的商业价值非常可观。本項目计划发展基 于石墨烯的纳米探针包裹技术优化其制造过程并 形成完整的产业化标准,实验结果表明石墨烯纳米 探针表现出优异的稳萣性疏水性和压电性,并可 大幅提高纳米针尖的使用寿命和测量精度因此具 有广阔的市场前景和商业价值。

       除了包覆纳米探针的新技術之外后续项目组 也将在复杂结构器件涂层等领域进行多项技术的开 发。例如将使用二维材料制备高品质的先进打印材 料(墨水)使嘚该打印材料具有可控的粘度、表 面张力、密度等参数,同时开发相应设备实现喷 墨打印技术的高效喷射。项目组将首先研发可用于 印刷电路的石墨烯墨水并开发基于具有压电特性 的2D材料的打印墨水,利用压电特性开发可自供电 的印刷电路另外,还会开发含石墨烯等②维材料 的打印材料开发电喷射雾化针尖阵列的微制造技 术,加速缓慢的3D打印过程随着3D打印技术的 广泛应用和在不同领域的潜在前景,本项技术的未 来市场将非常可观

微纳技术的不断发展各种微纳器件涌现,广泛应用于工程材料、国防科研、生物技术等领域微纳技术已经成为衡量国家尖端科学技术水平的指标之一。而检测技术与微纳加工技术相辅相成是加工精度的重要保障。本文主要介绍了几种光学和非光学检测技术

1.1扫描探针式测量方法

扫描探针式测量方法主要使用机械探针测量杠杆与位移传感器之间的配合以完成测量。其测量原理如下图所示:

待测样本沿着水平方向移动同时与待测结构表面接触的机械触针会随着样本表面形貌的变化做相应的垂直运动,该运动过程会被位移传感器捕捉转换为电信号通过对触针传回的位迻信息进行整合处理,就可以得到待测结构的表面轮廓信息扫描探针测量方法结构简单,测量范围较广且测量精度较高。其垂直测量精度可达0.1-0.2nm主要由位移传感器的精度来决定;水平测量精度主要受到了探针针尖半径尺寸和样本具体形貌的影响,通常情况下为0.05-0.25μm

扫描隧道显微镜利用量子理论中的隧道效应来探测样本表面的三维形貌。该方法需要建立样本表面原子中电子的隧道电流与高度之间的耦合关系其工作模式一般分为恒高度模式和恒电流模式。测量原理如图所示:

当金属探针的主要作用探针的针尖足够接近待测表面时会产生隧噵电流效应第一种模式:在扫描样本表面过程中,控制针尖的绝对高度不变随着待测样本表面高低变化针尖与待测样本距离将会发生妀变,隧道电流的大小也会相应随之变化通过对隧道电流的变化进行记录和处理即可得到待测结构表面的形貌信息。但是该种模式仅适鼡于样本表面没有过大起伏且组成成分单一的情况第二种工作模式:控制隧道电流不变,即保证针尖与样本表面的相对距离不变移动探针时探针会随待测表面高度变化而自动调整高度,即探针的运动轨迹为样本的形貌信息这种工作方式获取图像信息比较完整,所得结果质量高应用比较广泛。STM的检测分辨率极高达到原子级别,而且对样本无损伤但是其隧道效应的原理要求待测样本必须具备一定程喥的导电性,这就对测量样本的材料、结构等特性提出了要求限制了该方法的广泛应用。

原子力显微镜通过检测待测样品表面和一个微型力敏感元件之间的极弱原子间的相互作用力来获取样本高度信息从而实现微纳器件三维形貌测量。结构示意图如下图所示:

微悬臂的一端固定另一端以尖端接触待测表面,当针尖在样品表面扫描时因针尖尖端原子与样品表面原子存在的范德华力,使微悬臂产生微小弯曲检测悬臂弯曲所造成的微小的位移量,从而得到样品的表面形貌信息AFM测量精度高,其横向和纵向分辨率分别可以达到 0.1nm和 0.01nm同时,由於采用的是力学杠杆原理测量过程中并未直接接触样本表面因此可以减少对样本的损伤。

光学检测方法具有非接触、非破坏、信息量大、测量速度高、自动化程度高等优势近些年得到广泛关注与研究。目前常用的光学检测方法主要包括激光共聚焦扫描显微镜 (Laser Confocal Scanning Microscopy, LCSM)、数字全息技术、白光干涉等手段

2.1激光共聚焦扫描显微镜

激光共聚焦扫描显微镜的测量系统主要由照明系统、信号探测系统和光束扫描系统组成,其原理如图下所示:

光源经过针孔后由分束器反射再经过显微光路之后照明被测样本,被测样本的反射光线或被激发的荧光被信号探测器所接收在光路中,光源与样本处于共轭位置同时使用分束器使得信号探测器与样本也处于共轭位置。信号探测系统主要由聚焦透镜、针孔和光电倍增管组成只有待测点处于焦平面位置时其反射光才会透过探测针孔,在焦平面以外的点几乎不会在探测针孔处成像因此LCSM需要通过逐点扫描获得待测样本的光学横断面成像,再对这些切片图像进行三维解析就可以实现样本表面三维形貌的重建光学共焦技術可达到毫米级别的纵向测量深度,纳米量级的纵向分辨率其横向分辨率由于受到衍射极限及物镜数值孔径等因素的影响在微米级别。

數字全息技术通过数字记录由物光与参考光干涉所形成的全息图再对全息图进行后期数字再现,可以定量分析样本的强度信息和位相信息其中样本的三维形貌信息由物体的相位信息来表征。通过相位解包裹算法获得样本的连续相位分布即可实现样本的三维重建. 根据物參光夹角的不同,数字全息可以分为数字同轴全息和数字离轴全息同轴全息参考光与物光在同一轴上光路简单稳定,对光源相干度要求低可以充分利用探测器有限的空间带宽积,但是同轴全息不能直接从空域或频域分离真实成像与孪生像而孪生像会严重降低成像质量。离轴数字全息物光与参考光具有一定夹角使得孪生像与真实像可以分离,但对图像传感器的采样要求较高分辨率受到限制。目前数芓全息纵向分辨率可以达到纳米量级横向分辨率为亚微米量级。

2.3白光显微干涉技术

白光显微干涉技术采用白光作为光源利用宽光谱干涉在零光程差位置的干涉条纹最为清晰的原理进行扫描测量。其原理如下图:

通过待测物体表面反射回来的物光通过会聚透镜与另外一束通过分光镜直接返回聚焦透镜的参考光发生干涉形成干涉条纹并被探测器接收通过纵向扫描,探测器上干涉条纹调制度随之发生变化哃时记录下调制度的值和纵向位移,扫描完成后找到探测器像素对应的条纹调制度最大时纵向位移,即为对应的高度信息最终达到三維形貌测量的目的。

[1]杨帆.基于光场成像原理的微纳结构检测方法研究中国科学院大学(中国科学院光电技术研究所) TP391.41. 2019.06

[2]董申,孙涛闫永达.基於原子力显微镜的纳米机械加工与检测技术[M]. 哈尔滨工业大学出版社, 2012.

[3] 霍霞.吕建勋, 杨仁东, et al. 激光共聚焦显微镜与光学显微镜之比较[J]. 激光生物学报, ).

我要回帖

更多关于 金属探针的主要作用 的文章

 

随机推荐