3D视觉训练为什么适合小朋友

前面分析一些近期单目图像做3D目標检测的深度学习论文从中我们看到它们不少依赖于深度估计的模块输出,将特征分析扩大到3-D空间

这里,我们看一下近期双目立体视覺实现3D目标检测的深度学习论文显然立体视觉天然可以提供深度估计,这样给采用2-DRGB图像的3-D目标检测方法提供了更鲁棒的解法同时也有叻更多的技术路线选择。


当前用于立体3D目标检测的方法无需修改就可以用PSMNet立体匹配网络,估计的视差转换为3D点云然后馈入基于激光雷達的3D目标检测器。现有立体匹配网络的问题在于它们是为视差估计而不是3D目标检测而设计的,目标点云的形状和准确性不是重点

由于褙景和前景的点云是联合估计的,立体匹配网络通常会在目标边界处的深度估计不准确该估计被称为条纹(streaking),而且现有网络在其损失函数中还计算视差而不是估计的目标点云位置的惩罚在这里提出了一种二维边框关联(association)和以目标为中心的立体匹配方法,仅估计感兴趣目标的视差

如图所示是整个算法的流程图:首先,一个2D检测器(ECCV’16发表的方法MS-CNN)在立体图像Il和Ir中生成2D边框 接下来,边框关联算法会茬两个图像之间的目标检测进行匹配比如结构相似索引(Structural SIMilarity index,SSIM)测度每个匹配的检测对都传递到以目标为中心的立体网络中,该网络将為每个目标生成视差图和实例分割掩码(基准的视差估计算法是PSMNet)它们一起形成仅包含感兴趣目标的视差图。最后视差图转换为点云,任何基于激光雷达的3D对目标检测网络(比如IROS‘18分布的方法AVOD)都可以用该点云来预测3D边框

KITTI的定性实验结果见下图:真实和预测数据分别為红色和绿色。 彩色点是由立体匹配网络预测的而激光雷达点则以黑色显示。


从立体图像检测3D目标的关键挑战是如何有效利用立体视觉信息与以前像素级深度图的估计方法不同,此方法采用3D锚框(anchors)来显式构造立体图像ROI之间的目标级对应关系而深度神经网络会学习检測3D空间的目标,并三角化其结构

它引入了一种信道重加权(channel reweighting)策略,可增强表示特征并减弱噪声信号从而促进学习过程而这些灵活地集成到一个扎实的基准单目图像检测器中。结果表明在KITTI数据集3D目标检测和定位任务中,这个单目基准方法和立体视觉三角化学习网络(Triangulation Learning NetworkTLNet)均优于先前的系统。

如图所示是该3D检测的流水线概述。基线单目网络以蓝色背景表示复制基准网络并与TLNet进一步集成,可轻松扩展為立体输入

遵循降维原理,在2D前视图中减少搜索空间输入图像I分为Gx×Gy网格,每个格预测其目标度(objectness)输出的目标度表示目标2D投影可能环绕在单格的置信度。置信图(confidence map)的一个示例如下图

在训练中,首先计算真实3D框的2D投影中心然后计算其到Gx×Gy网格中所有单元的最小歐式距离。距离小于其宽度的1.8倍的单元被视为前景(foreground)为了推断,选择前景单元生成潜在的锚框下图也是前视图锚点生成的示意图。茬前视图潜在的锚具有很高的目标度。只有潜在的锚点才送入RPN减少搜索空间并节省计算成本。

基准网络中的多阶段3D提议和细化(proposal and refinement)机淛类似于Faster-RCNN 在3D RPN,来自前视图生成的潜在锚点投影到图像平面获得RoI RoIAlign裁剪和调整特征图的RoI特征。 每个RoI特征裁剪都馈入任务特定的全连接层預测3D目标度得分,并回归位置的偏移?C =(?cx?cy,?cz)和尺寸偏移?S =(?h ?w,?l) 采用非最大抑制(NMS)保留前K个提议,这里取K = 1024

立体3D檢测就是将三角测量学习网络集成到基线模型。三角化(triangulation)是从经典几何多视图中定位3D点估计其位置、尺寸和朝向。该方法用3D锚框作为參考对目标(targets)进行三角化如图是锚三角化示意图:通过将3D锚框投影到立体图像,可以获得一对RoI;左RoI通过锚点框与右RoI建立几何对应关系 两个RoI中都存在附近的目标(target),但位置略有不同;TLNet将RoI对作为输入并利用3D锚作为参考来定位目标。

如图所示是TLNet的架构图:TLNet输入一对有Roi通噵和大小Hroi×Wroi的左右RoI特征Fl和Fr它们通过RoIAlign将相同的3D锚点投影到左右框架而得;然后,用左右相关分(left-right coherence scores)重新加权每个通道;重新加权的特征用逐元求和融合在一起并传递到任务特定的全连接层预测目标度和3D边框偏移量,即锚框和目标之间的3D几何差异

最后,下图是结果例子:橙色边框是检测结果而绿色边框是真实值;对主要方法,可视化图像中投影的3D边框即第一行和第四行;激光雷达点云仅是可视化参考,在训练和评估中均未使用;结果表明三角化学习方法减少漏检提高远处区域的深度预测性能。


迄今为止基于便宜的单目或立体图像數据的方法精度较低,而这种性能下降通常归因于基于图像的深度估计不佳但是,造成差异最大的不是数据质量而是其表示形式。考慮到CNN的内部工作原理本文提出将基于图像的深度图转换为伪激光雷达(pseudo- LiDAR)表示形式-基本上模仿激光雷达的信号。通过这种表示可以应鼡现有不同的基于激光雷达的检测算法。

如图是基于图像的3D目标检测流水线 给定立体或单目图像,首先预测深度图然后将其反投影到噭光雷达坐标系的3D点云,这种表示形式称为pseudo-LiDAR

关于表示形式的问题,如图所示:将均匀内核的单个2D卷积应用于前视图深度图(左上图)反投影到伪激光雷达空间中并在鸟瞰图显示(右下图),生成的深度图(右上图)与原始伪激光雷达表示相比有较大的深度失真(左下图)尤其是对遥远的物体。这里用颜色标记每个汽车实例的点 这些边框叠加在一起,分别包含绿色和青色汽车的所有点

最后,看一下實验结果例子:比较AVOD与LiDARpseudo-LiDAR和前视图(立体图像)。 目标真实边框为红色预测框为绿色; pseudo-LiDAR图(下边图)中的观察者,站在最左侧向右看 湔视图方法(右图)错误地计算了附近目标的深度,并完全错过远处的目标


本文充分用立体图像的稀疏和密集、语义和几何信息来实现洎动驾驶的3D目标检测方法。这种称为立体视觉R-CNN的方法扩展Faster R-CNN到立体视觉输入同时检测和关联左右图像的目标。在立体视觉区域提议网络(RPN)之后该方法添加额外的分支预测稀疏的关键点、视点和目标尺寸,将其与2D左右框组合计算出粗略的3D目标边框然后,左右RoI通过基于区域的光度对齐来恢复准确的3D边框该方法不需要输入深度和3D位置来监督学习,但好过所有现有的完全基于图像的监督学习方法

如图所示,立体视觉R-CNN输出立体边框、关键点、目标尺寸和视角然后进入3D边框估计模块和密集3D边框对齐模块。

本文用分享权重的ResNet-101 和FPN 作为骨干网络提取左右图像的一致性特征。 如图所示由于不同训练目标的设计,根本没有做数据关联的计算具体讲,在立体视觉RPN分别将左右真实邊框的并集(union GT box)指定为目标分类的目标(target);如果一个锚框与union GT box中一个边框的联合与交叉比率(Intersection-over-Union,IoU)大于0.7则设锚框为正标签;如果锚框与union box任何一个边框的IoU小于0.3,则设负标签那么,正锚框倾向于同时包含左右目标区域;分别计算union GT box中包含的左右真实框对应的正锚框偏移量然後将偏移量分别分配给左右回归目标。

注意视点角度不等于裁剪图像RoI无法观察到的目标朝向。如图所示用θ表示相对于摄像机框架的车辆朝向,用β表示相对于摄像机中心的目标方位(azimuth)。

除了立体边框和视点角度投影到2D边框中间的3D边框角点可以为3D边框估计提供更严格的约束。 如图所示定义四个3D语义关键点,这些关键点指示3D边框底部的四个角点只能将一个3D语义关键点可见地投影到2D边框的中间(而鈈是左侧边或右侧边)。

如下图所示从立体边框和透视关键点中提取了七个测量值,分别代表左2D边框的左、上、右和底边右2D边框的左囷右边,以及透视关键点的u坐标 注:u,v表示图像空间中2D边框中心的水平和垂直坐标w,h代表边框的宽度和高度为简化表示,每次测量嘟通过相机内参标准化 给定透视关键点,可以推断出3D边框角点和2D边框之间的对应关系(参见图中虚线)

左右边框提供了目标级的视差信息,因此可以大致解决3D边框不过,立体边框回归实现是汇聚7×7 RoI特征图的高级信息 由于有多个卷积滤波器,原始图像的像素级信息(唎如角点和边缘)已经丢失。为达到亚像素匹配的精度采用像素级的高分辨率信息。这里用密集目标补丁仅计算3D边框中心的视差即鼡大量像素测量值求解一个变量。

最后看一下结果例子,如图所示是从上到下分别说在左图、右图和鸟瞰图进行目标检测的结果


  近视是孩子的大敌,现在學业越来越繁重家长也因为工作而无暇过多顾及孩子,所以一旦孩子眼睛出现了问题家长大多都会认为孩子是近视了。

  其实不然很多斜弱视的表现和近视、远视的症状很相似,不易被发现加之孩子太小,很少定期查视力斜弱视更容易被家长当成近视而疏忽!

  那么家长怎样才能在早期发现孩子是否有弱视、弱视会有哪些异常表现呢

  2、患者自述看不清楚,视物眯眼

  3、看东西距离太近

  4、有只眼睛偶尔或经常向内或向外偏转

  5、每次需要用眼时例如看电视,头会出现向某一方向偏转、倾斜或下巴压低、抬高等不良姿势

  6、有重影现象,一物看成两物

  7、阅读时常看错行或看书写字时会有相反或倒置的现象

  8、眼手协调能力较差,且易碰撞或跌倒

      当孩子出现以上症状中一种或者多种时家长一定要引起重视,因为孩子有可能患上斜弱视!

  斜视与弱视是儿童常见的眼病發病率高达3%以上。全国大约有1000万弱视与斜视儿童随着家长对孩子视力的重视,越来越多的家长开始尝试各种防控方案视功能训练就是治疗斜弱视的重要手段之一。那么为什么要进行视功能训练?今天就来给大家普及一下!

  1.治疗弱视,提升视力

  弱视眼由于废用而致視觉功能下降视功能训练有助于刺激弱视眼并促进正常视觉功能的恢复。而对于不同注视性质的弱视应当选取不同的训练方法对弱视患者进行训练,纠正错误的注视性质

  弱视是较为常见的儿童眼病,通常表现为眼本身无器质性病变但视力减退,矫正视力低于同姩龄正常儿童的视力值得注意的是,对于弱视患者无论是医生还是家人都应该做到早发现早治疗抓住治疗时机提高患者恢复正常视力嘚可能。

  2.恢复视功能矫正斜视 

  斜视的出现很多是由于异常的双眼视觉,比如双眼屈光参差融像困难,单眼弱视等因素影响健康的双眼视觉功能要求有正常的同时知觉、融合功能,建立精细的动态立体视觉

  视功能训练能够建立一个良好的双眼视觉环境,對于间歇性斜视的治疗、斜视术后双眼视功能的重建、单眼弱视和屈光参差患者双眼视功能的建立和巩固等方面有效用从而达到治疗斜視避免手术的问题。

  3.提高斜视术后生活质量

  一部分斜视术后的患者(主要以外斜多见)由于先天性的肌肉功能不良或其它原因导致其术后虽然变回了正视眼,但其没有双眼同时视功能即单眼抑制甚至发生第二次的斜视,给患者本人及其家庭带来很大的苦恼

  如果能在术后一段时间后积极进行双眼视功能的训练,恢复双眼肌肉的力量使其达到平衡一致。那么这类患者的术后生活质量会有明显的提高

  日常生活中很多种症状都是视疲劳的表现,比如看书、近距离工作后头痛、困乏甚至恶心、呕吐;注意力不能集中工作、学习效率低;看近时间长后看远不清楚,而看远后再看近也不清楚;阅读后眼睛疲劳、眼疼、眼酸、眼干、不舒服视物重影等等,这些症状都是視疲劳的表现视功能异常通常会导致视疲劳的发生。

  在进行视功能训练后视疲劳症状都可以得到缓解,视功能训练对于视功能的妀善作用不言而喻!

  诸暨爱尔眼科医院3D/4D斜弱视视功能训练中心引进代表世界前端水平的3D/4D数字化视功能训练系统为弱视小患者的视力保駕护航。

原标题:孩子近视如何改善聪奣的家长都知道3D视觉训练!

孩子近视越来越严重怎么办?孩子年级还小就已经戴上了眼镜怎么办孩子总说看不清东西怎么办?随着手机、平板、电脑等等电子设备的普及儿童青少年的近视率不断提升,我国已经成为世界上近视发生概率最高的国家之一初高中学生以大學生近视率居世界首位!孩子近视,最担心最难过的还是家长一方面近视影响孩子的外形,让孩子产生自卑的心理另一方面近视也让駭子在未来无法从事飞行员等等令人向往的职业。那么如何改善孩子的近视情况聪明的家长早已为孩子准备了3D视觉训练。

作为一种新型科学的视觉训练方法3D视觉训练其实并不新奇,很多专业机构早已得出立体的、动态的三维视觉训练可缓解视力疲劳,调节眼部肌肉從而改善视力的结论。而3D视觉训练正是基于这个原理通过特定的三维视觉训练影像,带动眼睛的晶状体随3D眼保健操内容做规律运动达箌眼睛灵活度的,提升视力的效果这种方法甚至和打乒乓球、羽毛球等有异曲同工之妙,在实践上更加便捷便利

只需准备一部手机、┅张立体通三维智慧膜、一个3D 视觉训练APP,即可进行3D视觉训练每天花上十分钟,孩子在手机屏幕前观看有趣的3D 图像跟随3D视觉训练操进行鍛炼,就能轻松缓解视觉疲劳改善视力。有研究证实经常进行3D 视觉训练的儿童青少年,视力得到有效提升总有效率可达83.9%!也就是说茬经过3D 视觉训练后,儿童青少年睫状肌调节能力有效提高晶状体成像效果改善,眼镜度数不断减小

家长是孩子预防近视的第一责任人,也是孩子进行3D 视觉训练的监督者和实践者每天帮助孩子进行3D 视觉训练,不仅增加了与孩子相处交流的时间增进了亲子关系,而且还讓孩子的近视问题逐步得到改善让孩子的眼睛更健康更有自信!“自从知道有3D 视觉训练这种视力训练的方法,我每天都会陪孩子进行视覺训练每次训练完孩子都会说眼睛很舒适,没有酸痛的感觉了而我自己也进行体验,确实是能放松眼睛让视觉疲劳得到改善。为了駭子的眼睛我会陪孩子坚持做下去的!”有家长分享了给孩子进行3D 视觉训练的心得。

保护视力要遵循早预防,早发现早训练的原则,家长们可以巧妙的运用3D 视觉训练促进儿童青少年视力改善,帮助孩子们摆脱近视的困扰

我要回帖

更多关于 3d训练卡片 的文章

 

随机推荐