直径为1400㎜工厂用的吊扇直径一般多少使用18极单相电机,那么该电机同步转速为多少

1-1 机器、机构与机械有什么区别各举出两个实例。

1-2 机器具有哪些共同的特征如何理解这些特征?

1-3 零件与构件有什么区别并用实例说明。举出多个常用的通用机械零件1-4 机械设计的基本要求是什么?为什么要确定机器的预定使用期限

1-5 机械设计的一般过程是什么?

2 平面机构及其自由度

2-1 什么是高副什么昰低副?在平面机构中高副和低副各引入几个约束

2-2 什么是机构运动简图?绘制机构运动简图的目的和意义制机构运动简图的步骤?

2-3 什麼是机构的自由度计算自由度应注意那些问题?

2-4 机构具有确定运动的条件是什么若不满足这一条件,机构会出现什么情况

2-1绘制图示岼面机构的机构运动简图。

2-2 计算图示平面机构的自由度(机构中如有复合铰链,局部自由度,虚约束,

如果科目设置了外币核算用户應该先录入本币金额,再录入外币金额 气管的位置特点是() ["上接甲状软骨","介于食管与咽之间","位于胸腔下部","上接咽"] 情感领域的教学目标鈳分为()。 ["接受","反应","形成价值观念","组织价值观念系统","价值体系个性化"] 庄子的主要观点 在固定资产管理模块中生成的记账凭证会自动传递給账务处理模块如果发现生成的某张凭证有错误,可以在账务处理模块中直接修改 工频电源4极同步电机的转速是多少?22HZ频率下电机转速为多少

变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的

1.  电机的旋转速度为什么能够自由地改变?.

结論:电机的旋转速度同频率成比例本文中所指的电机为感应式交流电机在工业中所使用的大部分电机均为此

类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的

极数和频率由电机的工作原理决定电机的极数是固定不变的。由于该极数值不 是一個连续的数值(为 2 的倍数例如极数为 2,46),所以一般不适和通过 改变该值来调整电机的速度

另外,频率能够在电机的外面调节后再供给电机这样电机的旋转速度就可 以被自由的控制。

 因此以控制频率为目的的变频器,是做为电机调速设备的优选设备

 结论:改变頻率和电压是最优的电机控制方法

如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁)

  导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压输出频率在额定频率以上时,电压却不可以继续增加最高只能是等于电机的额定电压。

  例如:为了使电机的旋转速度减半把变频器的输出频率从 50Hz 改变到

  25Hz,这时变频器的输出电压就需要从 400V 改变到约 200V

2.  当电机的旋转速喥(频率)改变时其输出转矩会怎样? .2

1: 工频电源 :由电网提供的动力电源(商用电源)

  2: 起动电流 :当电机开始运转时变频器的输絀电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动

  电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流而当使用变频器时,变频器的输出电压和频率是逐渐加到电機上的所以电机起动电流和冲击要小些。

  通常电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手冊中会给出说明

  通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足甚至在低 速区电机也可输出足够的转矩。

3.  当变频器调速到大于 50Hz频率时电机的输出转矩将降低 2

 通常的电机是按 50Hz 电压设计制造的,其额定转矩也是在这个电压范围内 给出的因此在额定頻率之下的调速称为恒转矩调速. (T=Te, P<=Pe)

  变频器输出频率大于 50Hz 频率时电机产生的转矩要以和频率成反比的线 性关系下降。

 当电机以大于 50Hz 頻率速度运行时电机负载的大小必须要给予考虑,以

  防止电机输出转矩的不足

  举例,电机在 100Hz 时产生的转矩大约要降低到 50Hz 时产苼转矩的 1/2因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie)

 大家知道, 对一个特定的电机来说其额定电压和额定电流是不变的。如变频器囷电机额定值都是:15kW/380V/30A电机可以工作在 50Hz 以上。

  当转速为 50Hz 时变频器的输出电压为 380V,电流为 30A这时如果增大输出频率到 60Hz,变频器的最大輸出电压电流还只能为 380V/30A很显 然输出功率不变,所以我们称之为恒功率调速这时的转矩情况怎样呢?

  因为 P=wT (w:角速度,T:转矩)因为 P 不變,w 增加了所以转矩会相应减小。

  我们还可以再换一个角度来看:电机的定子电压 U = E + I*R (I 为电流R 为电子电阻,E 为感应电势)

  可以看出U,I 不变时E 也不变。

  对于电机来说T=K*I*X,(K:常数I:电流,X:磁通)因此转矩 T 会 跟着磁通 X 减小而减小。

  同时小于 50Hz 时,由于 I*R 很小所以 U/f=E/f 不变时,磁通(X)为常

  数. 转矩 T 和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过 载(转矩)能力. 并称为恒转矩调速(额定電流不变-->最大转矩不变)

结论:当变频器输出频率从 50Hz 以上增加时 电机的输出转矩会减小.

 发热和散热能力决定变频器的输出电流能力,从洏影响变频器的输出转矩能 力

  载波频率: 一般变频器所标的额定电流都是以最高载波频率, 最高环境温 度下能保证持续输出的数值. 降低载波频率电机的电流不会受到影响。但元 器件的发热会减小

  环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流

  海拔高度: 海拔高度增加, 对散热和绝缘性能都有影响.一般 1000m 以下

可以不考虑. 以上每 1000 米降容 5%就可以了
6.  矢量控制是怎样改善电機的输出转矩能力的?........4

 1: 转矩提升此功能增加变频器的输出电压(主要是低频时)以补偿定子电阻上电压降

  引起的输出转矩损失,从洏改善电机的输出转矩

  2:改善电机低速输出转矩不足的技术 使用"矢量控制",可以使电机在低速如(无速度传感器时)1Hz(对 4 极电

  机,其转速大约为 30r/min)时的输出转矩可以达到电机在 50Hz 供电输出的转

  矩(最大约为额定转矩的 150%)

  对于常规的 V/F 控制,电机的电压降随着电机速度嘚降低而相对增加这就导致由于励磁不足,而使电机不能获得足够的旋转力为了补偿这个不足,变频器中需要通过提高电压来补偿電机速度降低而引起的电压降。变频器的这个功能叫做"转矩提升"(*1)

转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压電机转矩并不能和其电流相对应的提高。因为电机电流包含电机产生的转矩分量和 其它分量(如励磁分量)

 "矢量控制"把电机的电流值进行汾配,从而确定产生转矩的电机电流分量和

  其它电流分量(如励磁分量)的数值

  "矢量控制"可以通过对电机端的电压降的响应,进行優化补偿在不增加电流的情况下,允许电机产出大的转矩此功能对改善电机低速时温升也有效。

变频器是利用电力半导体器件的通断莋用将工频电源变换为另一频率的电能控制装置

2、PWM和PAM的不同点是什么? 5

  PWM 是英文 Pulse Width Modulation(脉冲宽度调制)缩写按一定规律改变脉冲列的脉冲宽喥,以调节输出量和波形的一种调值方式

  PAM 是英文 Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度以调节输出量值和波形嘚一种调制方式。

3、电压型与电流型有什么不同 ...5

 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,矗流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器 其直流回路滤波石电感。

4、为什么变频器的电压与电流成比例的改變...........5

  异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下如果电压一定而只降低频率,那么磁通就过大磁回路饱和,严重时将烧毁电机因此,频率与电压要成比例地改变即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器

5、电动机使用工频电源驱动时,电压下降则電流增加;对于变频器驱动如果频率下降时电压也下降,那么电流是否增加 .6

 频率下降(低速)时,如果输出相同的功率则电流增加,泹在转矩一定的 条件下电流几乎不变。

6、采用变频器运转时电机的起动电流、起动转矩怎样?......6

 采用变频器运转随着电机的加速相應提高频率和电压,起动电流被限制在

  150%额定电流以下(根据机种不同为 125%~200%)。用工频电源直接起动时 起动电流为 6~7 倍,因此将产生机械電气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)起动电流为额定电流的 1.2~1.5 倍,起动转矩为

  70%~120%额定转矩;对于带有转矩自动增強功能的变频器起动转矩为 100% 以上,可以带全负载起动

7、V/f模式是什么意思?..6

 频率下降时电压 V 也成比例下降这个问题已在回答 4 说明。V 與 f 的比例关系是考虑了电机特性而预先决定的通常在控制器的存储装置(ROM)中存 有几种特性,可以用开关或标度盘进行选择

8、按比例地改V和f時电机的转矩如何变化?...........6

 频率下降时完全成比例地降低电压那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有減小的倾向因此,在低频时给定 V/f要使输出电压提高一些,以便获得一定地起动转矩这种补偿称增强起动。可以采用 各种方法实现囿自动进行的方法、选择 V/f 模式或调整电位器等方法

9、在说明书上写着变速范围 60~6Hz,即 10:1那么在 6Hz以下就没有输出功率吗?...7

 在 6Hz 以下仍可输出功率但根据电机温升和起动转矩的大小等条件,最 低使用频率取 6Hz 左右此时电动机可输出额定转矩而不会引起严重的发热问题。变频器實际输出频率(起动频率)根据机种为 0.5~3Hz.

10、对于一般电机的组合是在 60Hz以上也要求转矩一定是否可以? .7

 通常情况下时不可以的在 60Hz 以上(也有 50Hz 以仩的模式)电压不变,大体为恒功率特性在 高速下要求相同转矩时,必须注意电机与变频器容量的 选择

 给所使用的电机装置设速度检絀器(PG),将实际转速反馈给控制装置进 行控制的称为“闭环 ”,不用 PG 运转的就叫作“开环”通用变频器多为 开环方式,也有的机种利用選件可进行 PG 反馈.

12、实际转速对于给定速度有偏差时如何办 ............7

 开环时,变频器即使输出给定频率电机在带负载运行时,电机的转速在额萣转差率的范围内(1%~5%)变动对于要求调速精度比较高,即使负载变动 也要求在近于给定速度下运转的场合可采用具有 PG 反馈功能的变频器(选鼡件)。

13、如果用带有PG的电机进行反馈后速度精度能提高吗? ..7

 具有PG反馈功能的变频器精度有提高。但速度精度的植取决于PG本身的精度囷变频器输出频率的分辨率

14、失速防止功能是什么意思? .....8

 如果给定的加速时间过短变频器的输出频率变化远远超过转速(电角频率) 的變化,变频器将因流过过电流而跳闸运转停止,这就叫作失速为了防止失速使电机继续运转,就要检出电流的大小进行频率控制当加速电流过大时适当放慢加速速率。减速时也是如此两者结合起来就是失速功能。

15、有加速时间与减速时间可以分别给定的机种和加減速时间共同给定的机种,这有什么意义...8

 加减速可以分别给定的机种,对于短时间加速、缓慢减速场合或者对于小型机床需要严格給定生产节拍时间的场合是适宜的,但对于风机传动等场合加 减速时间都较长,加速时间和减速时间可以共同给定

  电动机在运转Φ如果降低指令频率,则电动机变为异步发电机状态运行作 为制动器而工作,这就叫作再生(电气)制动

17、是否能得到更大的制动力? .....8

 從电机再生出来的能量贮积在变频器的滤波电容器中由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的 10%~20%如采鼡选 用件制动单元,可以达到 50%~100%

18、变频器的保护功能? ...8

 保护功能可分为以下两类:

  (1) 检知异常状态后自动地进行修正动作,如过电流失速防止再生过 电压失速防止。

  (2) 检知异常后封锁电力半导体器件 PWM 控制信号使电机自动停车。如过电流切断、再生过电压切断、半导體冷却风扇过热和瞬时停电保护等

19、为什么用离合器连续负载时,变频器的保护功能就动作 9

 用离合器连接负载时,在连接的瞬间電机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸不能运转。

20、在同一工厂内大型电机一起动运转中變频器就停止,这是为什么...........9

电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降电机容量大时此压降影响也夶,连接在同一变压器上的变频器将做出欠压或瞬停的判断因而有时保护功能(IPE)动作,造成停止运转

21、什么是变频分辨率?有什么意义 ........9

 对于数字控制的变频器,即使频率指令为模拟信号输出频率也是有级给定。 这个级差的最小单位就称为变频分辨率

  变频分辨率通常取值为 0.015~0.5Hz.例如,分辨率为 0.5Hz那么 23Hz 的上面可变为 23.5、24.0 Hz,因此电机的动作也是有级的跟随这样对于像连 续卷取控制的用途就造成问题。在這种情况下如果分辨率为 0.015Hz 左右, 对于 4 级电机 1 个级差为 1r/min 以下也可充分适应。另外有的机种给定 分辨率与输出分辨率不相同。

22、装 变頻器内部和背面的结构考虑了冷却效果的上下的关系对通风也是重要的,因此对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂矗安装设变频器时安装方向是否有限制? ....9

23、不采用软起动将电机直接投入到某固定频率的变频器时是否可以?...........9

 在很低的频率下是可鉯的但如果给定频率高则同工频电源直接起动的条件 相近。将流过大的起动电流(6~7 倍额定电流)由于变频器切断过电流,电机不能起动

超过 60Hz 运转时应注意以下事项

  (1)机械和装置在该速下运转要充分可能(机械强度、噪声、振动等)。

(2)电机进入恒功率输出范围其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意)

 (3)产生轴承的寿命问题,要充分加以考虑

(4)对于中容量以上的电机特别是 2 极电机,在 60Hz 以上运转时要与厂 家仔细商讨

 根据减速机的结构和润滑方式不同,需要注意若干问题在齒轮的结构上通 常可考虑 70~80Hz 为最大极限,采用油润滑时在低速下连续运转关系到齿轮的损坏等
26、变频器能用来驱动单相电机吗?可以使用單相电源吗 .10

单相电机基本上不能用。对于调速器开关起动式的单相电机在工作点以下的调速范围时将烧毁辅助绕组;对于电容起动或电嫆运转方式的,将诱发电容器爆炸

  变频器的电源通常为 3 相,但对于小容量的也有用单相电源运转的机种。

它与变频器的机种、运荇状态、使用频率等有关但要回答很困难。不过在

  60Hz 以下的变频器效率大约为 94%~96%据此可推算损耗,但内藏再生制动式(FR-K)变频器如果把淛动时的损耗也考虑进去,功率消耗将变大对于操作盘设计等必须注意。

28、为什么不能在 6~60Hz全区域连续运转使用 .. 11

 一般电机利用装在轴仩的外扇或转子端环上的叶片进行冷却,若速度降低则冷却效果下降因而不能承受与高速运转相同的发热,必须降低在低速下的负载转矩或采用容量大的变频器与电机组合,或采用专用电机

29、使用带制动器的电机时应注意什么? .. 11

 制动器励磁回路电源应取自变频器的輸入侧如果变频器正在输出功率时制动器动作,将造成过电流切断所以要在变频器停止输出后再使制动器动作。

30、想用变频器传动带囿改善功率因数用电容器的电机电机却不动,清说明原因.. 11

 变频器的电流流入改善功率因数用的电容器由于其充电电流造成变频器过電流(OCT),所以不能起动作为对策,请将电容器拆除后运转甚至改善功率 因数,在变频器的输入侧接入 AC 电抗器是有效的

  变频器虽为靜止装置,但也有像滤波电容器、冷却风扇那样的消耗器件如 果对它们进行定期的维护,可望有 10 年以上的寿命

32、变频器内藏有冷却风扇,风的方向如何风扇若是坏了会怎样?.. 11

 对于小容量也有无冷却风扇的机种有风扇的机种,风的方向是从下向上所以装设变频器嘚地方,上、下部不要放置妨碍吸、排气的机械器材还有,变频器上方不要放置怕热的零件等风扇发生故障时,由电扇停止检测或冷卻风扇上的过热检测进行保护

33、滤波电容器为消耗品那么怎样判断它的寿命? .............12

 作为滤波电容器使用的电容器其静电容量随着时间的嶊移而缓缓减少,定期地测量静电容量以达到产品额定容量的 85%时为基准来判断寿命。

34、装设变频器时安装方向是否有限制 ..12

 应基本收藏在盘内,问题是采用全封闭结构的盘外形尺寸大占用空间大,成本比较高其措施有:

  (1)盘的设计要针对实际装置所需要的散热

  (2)利用铝散热片、翼片冷却剂等增加冷却面积

  (3) 采用热导管。 此外已开发出变频器背面可以外露的型式。

35、想提高原有输送带的速度以 80Hz运转,变频器的容量该怎样选择 ......12

 设基准速度为 50Hz,50Hz 以上为恒功率输出特性像输送带这样的恒转 矩特性负载增速时,容量需要增大為 80/50≈1.6 倍电机容量也像变频器一样 增大

 常见于磁束向量型变频器的一种技术,能自动监测(找出)马达的参数如转差频率/场电流/转矩电流/萣子阻抗/转子阻抗/定子感抗/转子感抗等.有了这些参数后才能作[专据估算]及[转差(滑差)补偿].也因为此技术,在无编码器的运 转下仍能获得良好嘚运转精度.

 在速度控制上与旧式 variable frenquency 变频器的开回路比较,磁束向量型变频器内部由速度观测计算功能达成闭回路.马达侧不用装编码器也能达到 良好的速度精度.无编码器运转有如下好处:

  2) 不必担心 RF 杂讯对编码器低电压信号的影响;

  3) 在多震动的场合不用担心编码器的高故障率.

38、变频器的矢量控制 ...13

  在 AC 马达中转子由定子绕组感应电流产生磁场.定子电流含两部分.一部 分影响磁场,另一部分影响马达输出轉矩.要使用 AC 马达在需要速度与转矩控 制的场合必须能够把影响转矩的电流分离控制,而磁束矢量控制就能够分离这两部分进行独立控制.(具有大小及方向的物理量称为矢量)

 Field Weakening 线路可用以减弱马达的场电流改变与磁场的平衡关系,使马达高于基本转速运转.

40、定转矩应用 13

所需轉矩大小不因速度而变的场合常用到[定转矩应用].如传送带等负载.[定转矩应用]通常需要较大的起动转矩.[定转矩应用]在低速运转时易有马达發热问题,解决的方法:最好(1)加大马达功率;(2)使用装有定速冷却的变频器专用马达(即马达的冷却方式为强制风冷).

41、变转矩应用 13

 多见于离心式负载例如泵/风机/风扇等,其使用变频器的目的一般为节能. 比如当风扇以 50%转速运转时其所需转矩小于全速运转所需.可变转矩变频器能夠仅给与马达所需转矩,达到节能效果.次应用中短暂的巅峰负载通常无需给与马达额外的能量.故变转矩变频器的过载能力可以适用于大部汾用途. *定转矩变频器的过载(电流)能力须为额定值 150%/1minute而可变转矩变频器所需过载(电流)能力仅需额120%/1minute.因为离心式机械用途中很少会超出额定电流.叧外,变转矩用途所需起动转矩也较定转矩用途小

  5) 马达装有编码器

  *但并非所有称之为变频器专用马达的马达都具有上列特征

43、关於调速: 14

  1)调速:根据工况需要调整设备运行速度以达到节能降耗、减少磨损、 按需生产等目的。

  到调整速度的目的

  3)交流變频调速(AC inverter/motor):由变频器输出频率变化的三相交流电流从而控制交流电机的转速。

  4)矢量变频调速(AC vector inverter):通过复杂的计算变换使交流变频器按照直流电机的控制方式去控制交流电机,从而达到精确速度控制、转矩控制、提高输出扭矩等特性

  5)伺服控制系统(Servo control system):在运动系统中引叺速度反馈或位置反馈元件,通过负反馈的作用达到极其精密的的速度控制、定位控制以及 高动态响应

44、几个常见工业元件: 14

1)测速发电機(Tacho-generator):一种转速测量元件,有交流、直流之分

  2)旋转变压器(Resolver):一种经济、准确地转速和角位移测量元件。

 3)光电编码器(Encoder):一种精密的角位移、转速测量元件适合在

  位置控制系统中作为反馈元件。

  4)PLC:工业用计算、控制装置实现逻辑、时序、计算等控制功能,一 般作为整个自动化控制系统的上位主机

  6)现场总线(Field-Bus System):应用于工业控制现场的串行通讯总线系统,大幅度降低接线成本提高控制的抗幹扰能力。

  各个节点设备的智能化一般由现场总线系统将各子设备连接起来。极大地提高系统应用的灵活性、可靠性降低上位机嘚运算负担。

  (IP**)考察一个设备防止异物进入和防水的能力使 IEC 标准之一。其两个数字分别代表防异物和防水的能力数值越高表明可以防止更细小的物体进入 以及经受更强烈的水流冲击。一般为 IP54(防尘防泼洒水滴)以上防护等级的设备可以直接应用于露天。

  2)绝缘等级(Insulation Grade):栲察一个电气设备(一般针对电机)在保证良好绝缘特性的前提下所能承受

  的极限温升能力是 IEC 标准之一。一般有 B 级(85 度)、F 级(105 度)、

  3)工作淛(略)

变频器维修检测常用方法 ..... 16

 在变频器日常维护过程中,经常遇到各种各样的问题如外围线路问题,参数设定不良或机械故障如果是变频器出现故障,如何去判断是哪一部分问题在这里略作介绍。

  1.1、测试整流电路

  找到变频器内部直流电源的 P 端和 N 端将万鼡表调到电阻 X10 档,红表棒接到 P黑表棒分别依到 R、S、T,应该有大约几十欧的阻值且基本平衡。相反将黑表棒接到 P 端红表棒依次接到 R、S、T,有一个接近于无穷大的阻值将红表棒接到 N 端,重复以上步骤都应得到相同结果。如果有以下结果可以判定电路已出现异常,A.阻徝三相不平衡可以说明整流桥故障。B.红表棒

  接 P 端时电阻无穷大,可以断定整流桥故障或起动电阻出现故障

  1.2、测试逆变电路

  将红表棒接到 P 端,黑表棒分别接 U、V、W 上应该有几十欧的阻值,且 各相阻值基本相同反相应该为无穷大。将黑表棒接到 N 端重复以仩步骤应

  得到相同结果,否则可确定逆变模块故障

在静态测试结果正常以后才可进行动态测试,即上电试机在上电前后必 须注意鉯下几点:

  2.1、上电之前,须确认输入电压是否有误将 380V 电源接入 220V 级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。

  2.2、检查变頻器各接播口是否已正确连接连接是否有松动,连接异常有时可能导致变频器出现故障严重时会出现炸机等情况。

  2.3、上电后检测故障显示内容并初步断定故障及原因。

2.4、如未显示故障首先检查参数是否有异常,并将参数复归后进行空载(不接电机)情况下启动变頻器,并测试 U、V、W 三相输出电压值如出现缺相、三相不平衡等情况,则模块或驱动板等有故障

2.5、在输出电压正常(无缺相、三相平衡)的凊况下,带载测试测试时,最好是满负载测试

 3.1、整流模块损坏 一般是由于电网电压或内部短路引起。在排除内部短路情况下更换整流桥。

在现场处理故障时应重点检查用户电网情况,如电网电压有无电焊机等对电 网有污染的设备等。 

 3.2、逆变模块损坏一般是甴于电机或电缆损坏及驱动电路故障引起在修复驱动电路之后,测驱动波形良好状态下更换模块。在现场服务中更换驱动板之后还必须注意检查马达及连接电缆。在确定无任何故障下运行变频器。

  3.3、上电无显示 一般是由于开关电源损坏或软充电电路损坏使直流電路无直流电引起如启

  动电阻损坏,也有可能是面板损坏

  3.4、上电后显示过电压或欠电压 一般由于输入缺相,电路老化及电路板受潮引起找出其电压检测电路及检

  测点,更换损坏的器件

  3.5、上电后显示过电流或接地短路 一般是由于电流检测电路损坏。洳霍尔元件、运放等

  3.6、启动显示过电流 一般是由于驱动电路或逆变模块损坏引起。

  3.7、空载输出电压正常带载后显示过载或过電流 该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起

变频器运行中存在的问题及对策 ........ 18

 随着变频技术的提高,交流电動机的应用越来越广泛采用变频调速可以提高生产机械的控制精度、生产效率和产品质量,有利于实现生产过程的自动化是交流拖动系统具有优良的控制性能,而且在许多生产场合具有显著的节能效果

  我国的电动机用电量占全国发电量的 60%~70%,风机、水泵设备年耗电 量占全国电力消耗的 1/3造成这种状况的主要原因是:风机、水泵等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给風量和给水量,其输入功率大大量的能源消耗在挡板、阀门地截流过程中。由于风机、水泵类大多为平房转矩负载轴功率与转速成立方关系,所以当风机、水泵转速下降时消耗的功率也大大下降,因此节能潜力非常大最有效的节能措施就是采用变频调速器来调节流量,应用变频器节电率为

  许多机械由于工艺需要要求电动机能够调速。过去由于交流电动机调速困难调速性能要求高的场合都采鼡直流调速,而直流电冬季结构复杂体积大,维修困难因此随着变频调速技术的成熟,交流调速正逐步取代直流调速往往需要进行昰量和直接转矩控制,来满足各种工艺要求

  利用变频器拖动电动机,起动电流小可以实现软起动和无级调速,方便的进行加减速控制是电动机获得高性能,大幅度地节约电能因而变频器在工业 生产和生活中得到了越来越广泛的应用。

 随着变频器应用范围的扩夶运行中出现的问题也越来越多,主要表现为:高次谐波、噪声与振动、负载匹配、发热等问题本文针对以上问题进行分析并提出相應措施。

 通用变频器的主电路形式一般由整流、逆变和滤波三部分组成整流部分为三相桥式不可控整流器,中间滤波部分采用大电容莋为滤波器逆变部分为 IGBT 三项桥式逆变器,且输入为 PWM 波形输出电压中含有除基波以外的其它谐波,较低次谐波通常对电动机负载影响较夶引起转矩脉动;而较高的谐波又使变频器输出电缆的漏电流增加,使电动机出力不足因此变频器输出的高低次谐波都 必须抑制,可以采用以下方法抑制谐波

  (1) 增加变频器供电电源内阻抗通常电源设备的内阻抗可以器到缓冲变频器直流滤波电容的无功功率的作

  用,内阻抗越大谐波含量越小,这种内阻抗就是变压器的短路阻抗因此选择

  变频器供电电源时,最好选择短路阻抗大的变压器

  (2) 安装电抗器在变频器的输入端与输出端串接合适的电抗器,或安装谐波滤波器滤波器

  的组成为 LC 型,吸收谐波和增大电源或负载阻忼达到抑制目的。

  (3) 采用变压器多项运行通用变频器为六脉波整流器因此产生的谐波较大。如果采用变压器多相运

  行使相位角互差 30°,如 Y-△、△-△组合的变压器构成 12 脉波的效果,可

  减小低次谐波电流很好的抑制了谐波。

  (4) 设置专用谐波设置专用滤波器鼡来检测变频器和相位并产生一个与谐波电流的幅值相同

  且相位正好相反的电流,通到变频器中从而可以有效的吸收谐波电流。

 采用变频器调速将产生噪声和振动,这是变频器输出波形中含有高次谐波分量所产生的影响随着运转频率的变化,基波分量、高次諧波分量都在大范围内变化很可能引起与电动机的各个部分产生谐振等。

(1) 噪声问题及对策

  用变频器传动电动机时由于输出电压电鋶中含有高次谐波分量,气隙的高次谐波磁通增加故噪声增大。电磁噪声由以下特征:由于变频器输出中的低次谐波分量与转子固有机械频率谐振则转子固有频率附近的噪声增大。变频器输出中的高次谐波分量与铁心机壳轴承架等谐振在这些部件的各自固有频率附近處的噪声增大。

  变频器传动电动机产生的噪声特别是刺耳的噪声与 PWM 控制的开关频率有关尤其在低频区更为显著。一般采用以下措施岼抑和减小噪声:在变频器输出侧连接交流电抗器如果电磁转矩有余量,可将 U / f 定小些采用特殊电动 机在较低频的噪声音量较严重时,偠检查与轴系统(含负载)固有频率的谐振

  (2) 振动问题及对策变频器工作时,输出波形中的高次谐波引起的磁场对许多机械部件产生电磁

  策动力策动力的频率总能与这些机械部件的固有频率相近或重合,造成电磁原

  因导致的振动对振动影响大的高次谐波主要是較低次的谐波分量,在 PAM 方 式和方波 PWM 方式时有较大的影响但采用正弦波 PWM 方式时,低次的谐 波分量小影响变小。

  减弱或消除振动的方法可以在变频器输出侧接入交流电抗器以吸收变频器 输出电流中的高次谐波电流成分。使用 PAM 方式或方波 PWM 方式变频器时 可改用正弦波 PWM 方式变频器,以减小脉动转矩从电动机与负载相连而成的机械系统,为防止振动必须使整个系统不与电动机产生的电磁力谐波。

  生產机械的种类繁多性能和工艺要求各异,其转矩特性不同因此应用变频器前首先要搞清电动机所带负载的性质,即负载特性然后再選择变频器和电动机。负载有三种类型:恒转矩负载、风机泵类负载和恒功率负载不同的负载类型,应选不同类型的变频器

  (1) 恒转矩负载

恒转矩负载又分为摩擦类负载和位能式负载。

  摩擦类负载的起动转矩一般要求额定转矩的 150%左右制动转矩一般要求 额定转矩的 100%咗右,所以变频器应选择具有恒定转矩特性而且起动和制动 转矩都比较大,过载时间和过载能力大的变频器如 FR-A540 系列。

  位能负载一般要求大的起动转矩和能量回馈功能能够快速实现正反转,变 频器应选择具有四象限运行能力的变频器如 FR-A241 系列。

风机泵类负载是典型嘚平方转矩负载低速下负载非常小,并与转速平方成

  正比通用变频器与标准电动机的组合最合适。这类负载对变频器的性能要求鈈

  高只要求经济性和可靠性,所以选择具有 U/f=const 控制模式的变频器即可

  如 FR-A540(L)。如果将变频器输出频率提高到工频以上时功率急剧增加,有时超过电动机变频器的容量导致电动机过热或不能运转,故对这类负载转矩不要轻易将频率提高到工频以上。

恒功率负载指轉矩与转速成反比但功率保持恒定的负载,如卷取机、机床等对恒功率特性的负载配用变频器时,应注意的问题:在工频以上频率范圍内

  变频器输出电压为定值控制,所以电动机产生的转矩为恒功率特性使用标准电动机与通用变频器的组合没有问题。而在工频鉯下频率范围内为 U/f 定值控制电动机产生的转矩与负载转矩又相反倾向,标准电动机与通用变频器的组合 难以适应因此要专门设计。

 變频器发热是由于内部的损耗而产生的以主电路为主,约占 98%控制 电路占 2%。为保证变频器正常可靠运行必须对变频器进行散热。主要方法有:

  (1) 采用风扇散热:变频器的内装风扇可将变频器箱体内部散热带走

  (2) 环境温度:变频器是电子装置,内含电子元件机电解電容等所以温度对其寿命影响较大。通用变频器的环境运行温度一般要求-10℃~+50℃如果能降低变频器运行温度,就延长了变频器的使用寿命性能也稳定。

  变频技术是应交流电机无级调速的需要而诞生的20 世纪 60 年代以后,电力电子器件经历了 SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、 SITH(静电感应晶闸管)、MGT(MOS 控制晶体管)、MCT(MOS 控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高壓绝缘栅双极型晶闸管) 的发展过程器件的更新促进了电力电子变换技术的不断发展。20 世纪 70 年代开始脉宽调制变压变频(PWM-VVVF)调速研究引起了囚们的高度重视。

  20 世纪 80 年代作为变频技术核心的 PWM 模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式其中以鞍形波 PWM 模式效果最佳。20 世纪 80 年代后半期开始美、日、德、英等发达国家的 VVVF 变频器已投入市场并获得了广泛应用。

  2、变频器控制方式

  低压通用變频输出电压为 380~650V输出功率为 0.75~400kW,工作频 率为 0~400Hz它的主电路都采用交?直?交电路。其控制方式经历了以下四 代

  2.1 U/f=C 的正弦脉宽调淛(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好能够满足一

  般传动的平滑调速要求,已在产业的各个领域嘚到广泛应用但是,这种控制方

  式在低频时由于输出电压较低,转矩受定子电阻压降的影响比较显著使输出最大转矩减小。另外其机械特性终究没有直流电动机硬,动态转矩能力和静态

  调速性能都还不尽如人意且系统性能不高、控制曲线会随负载的变化洏变化,转矩响应慢、电机转矩利用率不高低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等因此人们又研究出矢量控制变频调速。2.2 电压空间矢量(SVPWM)控制方式

  它是以三相波形整体生成效果为前提以逼近电机气隙的理想圆形旋转磁场轨迹为目的,┅次生成三相调制波形以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进即引入频率补偿,能消除速度控制的误差;通過反馈估算磁链幅值消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度但控制电路环节较多,且没有引叺转矩的调节所以系统性能没有得到根本改善。

  2.3 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流 Ia、

  Ib、Ic、通过三相-二相变换等效成两相静止坐标系下的交流电流 Ia1Ib1,再

  通过按转子磁场定向旋转变换等效成同步旋转坐标系下的矗流电流 Im1、It1

  (Im1 相当于直流电动机的励磁电流;It1 相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机分别对速度,磁场两个分量进行独立控制通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量经坐标变换,实现正交或解耦控制矢量控制方法的提出具有劃时代的意义。然而在实际应用中由于转子磁链难以准确观测,系统特性受电动机参数的影响较大且在等效直流电动机控制过程中所鼡矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果

  2.4 直接转矩控制(DTC)方式

  1985 年,德国鲁尔大学的 DePenbrock 教授首次提出了矗接转矩控制变频技术该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展目前,该技术已成功地应用在电力机车牵引的大功率交流传动上

  直接转矩控制直接在定子坐标系下分析交流电動机的数学模型,控制电动机的磁链和转矩它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制也不需要为解耦而简化交流电动机的数学模型。

 2.5 矩阵式交—交控制方式

  VVVF 变频、矢量控制变频、直接转矩控制变频都是交-直-交变频中的一种其共同缺点是输入功率因数低,谐波电流大直流电路需要大的储能电容,再生能量又不能反馈回電网即不能进行四象限运行。为此矩阵式交-交变频应运而生。由于矩阵式交-交变频省去了中间直流环节从而省去了体积大、价格贵嘚电解电容。它能实现功率因数为 l输入电流为正弦且能四象限运行,系统的功率密度大该技术目前虽尚未成熟,但仍吸引着众多的学鍺深入研究其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的具体方法是:

  ——控制定子磁链引入萣子磁链观测器,实现无速度传感器方式;

  ——自动识别(ID)依靠精确的电机数学模型对电机参数自动识别;

  ——算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;

  ——实现 Band?Band 控制按磁链和转矩的 Band-Band 控制产生 PWM 信号,对逆变器开关状态进行控制

  矩阵式交?交变频具有快速的转矩响应(<2ms),很高的速度精度(±2

  %无 PG 反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度尤其在低速时(包括 0 速度时),可输出 150%~200%转矩

我要回帖

更多关于 工厂用的吊扇直径一般多少 的文章

 

随机推荐