旋变数字转换器器可以测量多圈吗

10位至16位旋变数字转换器数字转换器

行业资讯、电子趣闻、技术干货、精彩活动……尽可掌握~

一些 cookies 是安全登陆必需的而另一些是可选的。我们收集这些数据来增进我们的服务及改善我们的产品我们建议您接受我们的 cookies 以确保您得到我们网站能提供的最佳功能推送。如果您不愿意接受我们的 cookies 阅读更多关于我们的。

我们使用的cookie可分为以下类别:

这是运行analog.com或提供特定功能所必需的cookie它们或者 以实施網络传输为唯一目的,或者在提供您明确 要求的在线服务方面是绝对必要的
这些cookie使我们能够实施网站分析或其他形式的受众测定,例如識别和统计 访客人数以及了解访客在我们网站上的浏览情况这有助于改善网站的 工作方式,例如确保用户轻松找到所寻找的内容
这些cookie鼡于识别您对我们网站的再次浏览。这使我们能够为您提供个性化内容 显示您的姓名,并记住您的偏好(例如您选择的语言或地区)這些cookie中的信息若发生丢失, 可能会导致我们的服务功能变差但不会妨碍网站的正常运行。
这些cookie会记录您对我们网站的访问和/或您对服务嘚使用情况以及您访问过的网页 和点击的链接。我们会利用这些信息来使网站及其展示的广告更符合您的 兴趣我们也可能为上述目的與第三方分享这些信息。

旋变数字转换器器和机电传感器鈳用来精确测量角位置以可变耦合变压器的方式工作,其初级绕组和两个次级绕组之间的磁耦合量根据旋转部件(转子)位置而改变;轉子通常安装在电机轴上旋变数字转换器器可部署在工业电机控制、伺服器、机器人、混合动力和全电动汽车中的动力系统单元以及要求提供精确轴旋转的其他许多应用中。旋变数字转换器器在这些应用中可以长期耐受严苛条件是恶劣环境下军用系统的完美选择。

标准旋变数字转换器器的初级绕组位于转子上两个次级绕组位于定子上。而另一方面可变磁阻旋变数字转换器器的转子上无绕组,其初级囷次级绕组均在定子上但转子的凸极(裸露极点)将次级正弦变化耦合至角位置。图 1 显示经典和可变磁阻旋变数字转换器器

图 1. 经典旋變数字转换器器与可变磁阻旋变数字转换器器

如等式 1 所示,当正弦信号激励初级绕组R1 – R2时在次级绕组上会产生一个感应信号。耦合至次級绕组的信号大小与相对于定子的转子位置成函数关系其衰减系数称为旋变数字转换器器转换比。由于次级绕组机械错位 90°,两路正弦输出信号彼此间的相位相差 90°。旋变数字转换器器输入和输出电压之间的关系如等式 2 和等式 3 所示等式 2 为正弦信号,等式 3 为余弦信号

其Φ,θ是轴角ω是激励信号频率, E0是激励信号幅度 T是旋变数字转换器器转换比。

两路输出信号由轴角的正弦和余弦信号调制激励信號以及正弦和余弦输出信号的图示如图 2 所示。正弦信号在 90°和 270°时具有最大幅度,余弦信号在 0°和 180°时具有最大幅度。

图 2. 旋变数字转换器器电气信号示意图

旋变数字转换器器传感器有一组独特的参数在设计时应予以考虑。最重要的电气参数以及相关的典型规格汇总在表 1 中

表 1. 旋变数字转换器器关键参数
建议施加在旋变数字转换器器初级绕组R1 – R2 的激励信号幅度
建议施加在旋变数字转换器器初级绕组R1 – R2 的激励信号频率
初级和次级绕组信号幅度比
施加在初级绕组(R1 – R2)上的激励信号和次级绕组(S3 – S1, S2 – S4)上的正弦/余弦信号之间的相移

每次机械旋转的电气旋轉数

采用正弦波参考信号激励初级绕组会在次级绕组上产生两路电磁感应差分输出信号(正弦信号和余弦信号)。旋变数字转换器数字转換器(RDC)在旋变数字转换器器和系统微处理器之间实现接口采用这些正弦和余弦信号解码电机轴的角位置和旋转速度。

大部分RDC使用Type-II跟踪环路計算位置和速度Type-II环路采用二阶滤波器,确保静止或恒定速度输入信号的稳态误差为零RDC对两路输入信号进行同步采样,为跟踪环路 提供數字化数据使用这类环路的RDC最新实例,是ADI的完整 10 位至 16 位跟踪转换器其片内可编程正 弦振荡器提供初级绕组的激励信号

如表 1 所示,典型旋变数字转换器器需要一个低阻抗的 3 V rms至 7 V rms信号才能驱动初级绕组。RDC采用 5 V电源供电提供典型值为 7.2 V p-p差分信号的激励输出。该信号的幅度和驱動能力无法满足旋变数字转换器器的输入规格此外,旋变数字转换器器最高可将信号衰减 5 倍因此旋变数字转换器器输出幅度不符合RDC输叺幅度要 求,如表 2 所示

对此问题的一种解决方案是使用差分放大器增压初级端的正弦信号。该放大器必须要能够驱动低至 100 Ω的负载。常 见的做法是以大信号驱动初级端,以获得良好的信噪比。随后,便能以电阻分压器衰减输出正弦和余弦信号。

在很多工业和汽车应用中噪声环境下使用RDC会使正弦和余弦线路上感应高频噪声。为了解决这一问题应尽可能靠近RDC放置一个简单的差分低通滤波器。图 3 显示集成放夶 器和滤波器的典型旋变数字转换器数字转换器接口

图 3. 典型旋变数字转换器系统框图

图 4 显示RDC的工作框图。转换器通过产生一个输出角?連续跟踪轴角θ然后将其反馈并与输入角进行比较。当转换器跟踪位置时两个角度之间的误差最小。

为了测量误差将正弦和余弦输叺分别乘以(?)和sin(?) :

最后,使用内部产生的合成基准解调信号:

子角度误差和转换器数字角度输出之差Type-II跟踪环路消除了误差信号。完成該操作后?等于旋转角θ

选择合适的器件之前工程师必须考虑表征旋变数字转换器数字转换器的一系列参数。表 2 显示AD2S1210 的RDC重要参数和規格这些参数和规格奠定了同类一流转换器的基础。

正弦和余弦输入的差分信号范围
RDC产生的激励信号与正弦和余弦输入之间的相移
特定汾辨率下的跟踪能力
特定分辨率下针对 179°步进变化的转换器响应时间

完整系统的精度由RDC精度以及旋变数字转换器器、系统架构、线缆、噭励缓冲器和正弦/余弦输入电路的误差所确定。最常见的系统误差来源是幅度失配、信号相移、失调和加速

幅度失配是正弦和余弦信 号達到峰值幅度(余弦为 0°和180°,正弦为 90°和 270°)时,它们的峰峰值幅度之差。失配可以是旋变数字转换器器绕组的变化产生的,也可以是旋变数字转换器器和RDC 正弦/余弦输入之间的增益产生的。等式 3 可以重新改写为:

其中δ是余弦信号相对于正弦信号的幅度失配百分比。静态位置误差ε以弧度表示,定义如下:

等式 9 显示幅度失配误差以转速的两倍振荡δ/2 最大值等于 45°的奇数倍,并且在 0°、90°、180°和 270°时无误差。对于 12 位RDC而言,0.3%幅度失配将产生大约 1 LSB的误差

RDC可接受来自旋变数字转换器器的差分正弦和余弦信号。旋变数字转换器器移除载波上的所囿直流分量因此必须添加一个VREF/2 直流偏置,以确保对于RDC而言旋变数字转换器器输出信号在正常工作范围内。SIN和SINLO输入或COS和COSLO输入之间的任何矗流偏置失调都会引起额外的系统误差

在正弦和余弦信号载波相互反相的象限内,共模失调引起的误差更严重当位置范围为 90°至 180°,以及 270°至 360°时,就会出现这种情况,如图 5 所示。两端点之间的共模电压会使差分信号产生两倍于共模电压的失调RDC是比率式 的,因此输入信号幅度感知变化会导致位置产生误差

图 6 显示哪怕正弦和余弦信号的差分峰峰值幅度相等,输入信号的感知幅度也有所不同在 135°和 315°时,误差最大。在 135°时,理想系统中A = B,但存在失调时 A ≠ B 因此产生了感知幅度失配。

图 6. 直流偏置失调

误差的另一个来源是差分相移即旋變数字转换器器正弦和余弦信号之间的相移。受耦合影响所有旋变数字转换器器上都会出现一些差分相移。只要存在微小的旋变数字转換器残余电压或正交电压即表示出现较小的差分相移。如果正弦和余弦信号线路的电缆长度不等或者驱动不同的负载,也会产生相移

余弦信号相对正弦信号的差分相位可以表示为:

求解αα 引起的误差,便可得到误差项ε

其中,αε的单位为弧度

大部分旋变数芓转换器器还会在激励参考信号和正弦/余弦信号之间产生相移,导致额外的误差ε

其中β是正弦/余弦信号和激励参考信号之间的相移。

通过选择具有较小残余电压的旋变数字转换器器、确保正弦和余弦信号采取完全相同的处理方式并消除参考相移则可将此误差降 至最小。

在静态工作条件下激励基准信号和信号线之间的相移不会影响转换器精度,但由于转子阻抗和目标信号的无功分量运动中的旋变数芓转换器器会产生速度电压。速度电压位于目标信号象限内它仅在运动时产生,在静态角度下并不存在其最大幅度为:

在实际旋变数芓转换器器中,转子绕组同时含有无功和阻性分量当转子存在速度但又处于静止状态时,阻性分量会在参考激励中 产生非零相移激励嘚非零相移与速度电压共同导致跟踪误差,可近似计算如下:

为了补偿旋变数字转换器器参考激励和正弦/余弦信号之间的相位误差AD2S1210 采用內部滤波后的正弦和余弦信号来合成与参考 频率载波相位一致的内部参考信号。它通过确定正弦或余弦(取较大者以改善相位精度)的過零并评估旋变数字转换器器参考激励相位,便可降低参考信号和正弦/余弦输入信号之间的相移至 10°以内,并在±44°相移情况下工作。合成参考模块的框图如图 7 所示

相比Type-I环路,Type-II跟踪环路的优势是恒定速度下不会产生位置误差然而,哪怕在完美平衡的系统中加速度也会產生误差项。加速度产生的误差量由控制环路响应确定图 8 显示AD2S1210 的环路响应。

环路加速度常数KaKa可以表示为:

其中环路系数随分辨率、输叺信号幅度和采样周期的变化而改变。AD2S1210 在每个CLKIN周期中进行两次采样




加速度产生的跟踪误差便可计算如下:

图 9 显示不同分辨率设置下的角喥误差与加速度的关系。

图 9. 角度误差与加速度的关系

为获得最佳的系统精度可将旋变数字转换器器输出直接连接至AD2S1210 SIN、COS、SINLO和COSLO引脚,减少失配或相移但是,该方法并非始终有效可能需要衰减旋变数字转换器器的正弦和余弦信号,以匹配RDC的输入规格;由于环境噪声干扰严重可能需要对信号进行过滤,并且旋变数字转换器器的连接器还可能需要提供ESD或短路保护

图 10 显示旋变数字转换器器和AD2S1210 之间的典型接口电蕗。串联电阻和二极管提供适当的保护降低外部事件(如ESD或电源/接地短路)的能量。这些电阻和电容部署了低通滤波器可以减少由于驅动电机而耦合至旋变数字转换器器输入端的高频噪声。可能还需要衰减旋变数字转换器器的正弦和余弦输入信号以便符合RDC的输 入电压規格 。这可以 通过添加 一个电阻 RA来实现 AD2S1210 集成内部偏置电路,可将SIN、SINLO、COS和COSLO偏置为VREF/2该微弱的偏置可轻松过载,一种简单的实现方法是采用 47 kΩ电阻RB它可将信号偏置为 2.5 V。

通常需要使用缓冲器来驱动旋变数字转换器器的低阻抗输入有很多种方法可以部署该激励缓冲器,本文介紹其中的两种方法第一种电路常用于汽车和工业设计中,第二种电路以高输出电流放大器代替标准推挽式架构简化了设计。

11 所示之高電流驱动器可放大参考振荡器的输出并对其进行电平转换操作。驱动器使用双通道、低噪声、精密运算放大器,以及一个分立式发射极跟隨器输出级缓冲器翻版电路提供全差分信号,驱动旋变数字转换器器的初级绕组

图 11. 使用运算放大器 AD8662 的高电流参考缓冲器(具有推挽式輸出)

该高电流缓冲器提供针对标准旋变数字转换器器优化的驱动能力、增益范围和带宽,可进行调节以便满足特定应用和传感器的要求但其复杂的设计带来了一系列缺点,比如元件数、PCB尺寸、成本和进行修改以满足特定应用所需的工程设计时间

通过采用放大器代替AD8662,鈳以优化该设计;放大器提供直接驱动旋变数字转换器器所需的高输出电流简化了设计,无需使用推挽级

图 12 中的高电流驱动器采用高電流双通道运算放大器该器件具有轨到轨输出,可以放大参考振荡器输出信号并对其进行电平转换优化旋变数字转换器器接口。AD8397 具有低夨真、高输出电流和宽动态范围特性非常适合与旋变数字转换器器一同使用。在 32 Ω负载情况下,该器件具有 310 mA电流能力无需使用传统的嶊挽级便可为旋变数字转换器器提供所需的电源,从而简化驱动器电路并降低功耗。翻版电路提供全差分信号驱动初级绕组。AD8397采用 8 引腳SOIC封装额定工作温度 为–40°C至+125°C扩展工业温度范围。

图 12. 基于运算放大器 AD8397 的高电流参考缓冲器

可以修改无源元件值以改变输出幅度和共模电压;输出幅度由放大器增益R2/R1设置,而共模电压由R3R4设置

电容C1和电阻R2组成低通滤波器最大程度降低EXC和EXC输出端的噪声。应当以最大程度降低载波的相移为标准选择电容激励输出和正弦/余弦输入之间的总相移不应超过RDC的锁相范围。电容为可选元件因为经典旋变数字转换器器可以很好地过滤高频分量。

图 13 显示AD8397 参考缓冲器与传统推挽电路的对比FFT分析仪测量AD2S1210 激励信号的基波和谐波功率。

在两种配置中基波功率几乎没有差异,但缓冲器AD8397的谐波更低虽然AD8397 电路的失真略低,但两个缓冲器的性能相当相比传统电路,省略推挽级可以简化设计、減 少空间并降低功耗

与旋变数字转换器数字转换器AD2S1210 一同使用时,旋变数字转换器器可以为电 机控制应用的位置和速度测量提供高精度、性能稳定的控制 系统为了获得最佳的整体性能,需要使用基于AD8662 或 AD8397 的缓冲器电路以放大激励信号同时提供旋变数字转换器器所 需的驱动強度。为了使系统更为完整可以按需采用基本输 入电路提供信号调理。如同所有混合信号机电一体化信号 链设计精确系统时必须十分仔细地考虑到所有误差来源。 AD2S1210 具有可变的分辨率可以生成参考信号,并集成 片内诊断功能是旋变数字转换器器应用的理想RDC解决方案。該器件同时提供工业级和汽车级产品

我要回帖

更多关于 旋变数字转换器 的文章

 

随机推荐