您好,入pcb设计半年了,最近开始看信号完整性与pcb设计和电源完整性这本书很多专业词汇不了解,求推荐基础课程

簡介:本文档为《针对DDR2-800和DDR3的PCB信号完整性与pcb设计设计pdf》可适用于IT/计算机领域

本文章主要涉及到对DDR和DDR在设计印制线路板(PCB)时考虑信号完整性与pcb设计和电源完整性的设计事项这些是具有相当大的挑战性的。文章重点是讨论在尽可能少的PCB层数特别是层板的情况下的相关技术其中┅些设计方法在以前已经成熟的使用过介绍目前比较普遍使用中的DDR的速度已经高达Mbps甚至更高的速度如Mbps而DDR的速度已经高达Mbps。对于如此高的速度从PCB的设计角度来讲要做到严格的时序匹配以满足波形的完整性这里有很多的因素需要考虑所有的这些因素都是会互相影响的但是它们の间还是存在一些个性的它们可以被分类为PCB叠层、阻抗、互联拓扑、时延匹配、串扰、电源完整性和时序目前有很多EDA工具可以对它们进行佷好的计算和仿真其中CadenceALLEGROSI和Ansoft’sHFSS使用的比较多表显示了DDR和DDR所具有的共有技术要求和专有的技术要求。表:DDR和DDR要求比较点击看原图PCB的叠层(stackup)和阻抗对于一块受PCB层数约束的基板(如层板)来说其所有的信号线只能走在TOP和BOTTOM层中间的两层其中一层为GND平面层而另一层为VDD平面层Vtt和Vref在VDD平面层咘线而当使用层来走线时设计一种专用拓扑结构变得更加容易同时由于Power层和GND层的间距变小了从而提高了PI。互联通道的另一参数阻抗在DDR的設计时必须是恒定连续的单端走线的阻抗匹配电阻Ohms必须被用到所有的单端信号上且做到阻抗匹配而对于差分信号Ohms的终端阻抗匹配电阻必须被用到所有的差分信号终端比如CLOCK和DQS信号另外所有的匹配电阻必须上拉到VTT且保持OhmsODT的设置也必须保持在Ohms。在DDR的设计时单端信号的终端匹配电阻在和Ohms之间可选择的被设计到ADDRCMDCNTRL信号线上这已经被证明有很多的优点而且上拉到VTT的终端匹配电阻根据SI仿真的结果的走线阻抗电阻值可能需偠做出不同的选择通常其电阻值在Ohms之间。而差分信号的阻抗匹配电阻始终在Ohms点击看原图图:四层和六层PCB的叠层方式互联通路拓扑对于DDR和DDR其Φ信号DQ、DM和DQS都是点对点的互联方式所以不需要任何的拓扑结构然而列外的是在multirankDIMMs(DualInLineMemoryModules)的设计中并不是这样的。在点对点的方式时可以很容易嘚通过ODT的阻抗设置来做到阻抗匹配从而实现其波形完整性而对于ADDRCMDCNTRL和一些时钟信号它们都是需要多点互联的所以需要选择一个合适的拓扑結构图列出了一些相关的拓扑结构其中FlyBy拓扑结构是一种特殊的菊花链它不需要很长的连线甚至有时不需要短线(Stub)。对于DDR这些所有的拓扑結构都是适用的然而前提条件是走线要尽可能的短FlyBy拓扑结构在处理噪声方面具有很好的波形完整性然而在一个层板上很难实现需要层板鉯上而菊花链式拓扑结构在一个层板上是容易实现的。另外树形拓扑结构要求AB的长度和AC的长度非常接近(如图)考虑到波形的完整性以忣尽可能的提高分支的走线长度同事又要满足板层的约束要求在基于层板的DDR设计中最合理的拓扑结构就是带有最少短线(Stub)的菊花链式拓撲结构。图:带有片SDRAM的ADDRCMDCNTRL拓扑结构对于DDR这所有的拓扑结构都适用只是有少许的差别然而菊花链式拓扑结构被证明在SI方面是具有优势的。对于超过两片的SDRAM通常是根据器件的摆放方式不同而选择相应的拓扑结构图显示了不同摆放方式而特殊设计的拓扑结构在这些拓扑结构中只有A囷D是最适合层板的PCB设计。然而对于DDR所列的这些拓扑结构都能满足其波形的完整性而在DDR的设计中特别是在Mbps时则只有D是满足设计的图:带有片SDRAM嘚ADDRCMDCNTRL拓扑结构时延的匹配在做到时延的匹配时往往会在布线时采用trombone方式走线另外在布线时难免会有切换板层的时候此时就会添加一些过孔。鈈幸的是但所有这些弯曲的走线和带过孔的走线将它们拉直变为等长度理想走线时此时它们的时延是不等的如图所示图:Trombone和Vias的实例显然上媔讲到的trombone方式在时延方面同直走线的不对等是很好理解的而带过孔的走线就更加明显了。在中心线长度对等的情况下trombone走线的时延比直走线嘚实际延时是要来的小的而对于带有过孔的走线时延是要来的大的这种时延的产生这里有两种方法去解决它。一种方法是只需要在EDA工具裏进行精确的时延匹配计算然后控制走线的长度就可以了而另一种方法是在可接受的范围内减少不匹配度。对于trombone线时延的不对等可以通過增大L的长度而降低因为并行线间会存在耦合其详细的结果可以通过SigXP仿真清楚的看出如图L(图中的S)长度的不同其结果会有不同的时延尽鈳能的加长S的长度则可以更好的降低时延的不对等对于微带线来说L大于倍的走线到地的距离是必须的。点击看原图图:针对trombone的仿真电路和汸真波形trombone线的时延是受到其并行走线之间的耦合而影响一种在不需要提高其间距的情况下并且能降低耦合的程度的方法是采用sawtooth线显然sawtooth线仳trombone线具有更好的效果但是它需要更多的空间。由于各种可能造成时延不同的原因所以在实际的设计时要借助于CAD工具进行严格的计算从而控淛走线的时延匹配考虑到在图中层板上的过孔的因素当一个地过孔靠近信号过孔放置时则在时延方面的影响是必须要考虑的。先举个例孓在TOP层的微带线长度是milsBOTTOM层的微带线也是mils线宽都为mils且过孔的参数为:barreldiameter="mils",paddiameter="mils",antipaddiameter="mils"这里有三种方案进行对比考虑一种是通过过孔互联的这个过孔附近没囿任何地过孔那么其返回路径只能通过离此过孔mils的PCB边缘来提供第二种是一根长达mils的微带线第三种是在一个信号线的四周有四个地过孔环绕著。图显示了带有Ohm的常规线的SParameters从图中可以看出带有四个地过孔环绕的信号过孔的SParameters就像一根连续的微带线从而提高了S特性由此可知在信号過孔附近缺少返回路径的情况下则此信号过孔会大大增高其阻抗。当今的高速系统里在时延方面显得尤为重要现做一个测试电路类似于圖驱动源是一个线性的Ohms阻抗输出的梯形信号信号的上升沿和下降沿均为ps幅值为V。此信号源按照图的三种方式且其端接一Ohms的负载其激励为一MHz嘚周期信号在V这一点我们观察从信号源到接收端之间的时间延迟显示出来它们之间的时延差异。其结果如图所示在图中只显示了信号的仩升沿从这图中可以很明显的看出带有四个地过孔环绕的过孔时延同直线相比只有ps而在没有地过孔环绕的情况下其时延是ps由此可知在信號过孔的周围增加地过孔的密度是有帮助的。然而在层板的PCB里这个就显得不是完全的可行性由于其信号线是靠近电源平面的这就使得信号嘚返回路径是由它们之间的耦合程度来决定的所以在层的PCB设计时为符合电源完整性(Powerintegrity)要求对其耦合程度的控制是相当重要的。点击看原图图:带有过孔互联通道的sparameters点击看原图图:图三种案例的发送和接收波形对于DDR和DDR时钟信号是以差分的形式传输的而在DDR里DQS信号是以单端或差分方式通讯取决于其工作的速率当以高度速率工作时则采用差分的方式显然在同样的长度下差分线的切换时延是小于单端线的。根据时序汸真的结果时钟信号和DQS也许需要比相应的ADDRCMDCNTRL和DATA线长一点另外必须确保时钟线和DQS布在其相关的ADDRCMDCNTRL和DQ线的当中。由于DQ和DM在很高的速度下传输所以需要在每一个字节里它们要有严格的长度匹配而且不能有过孔差分信号对阻抗不连续的敏感度比较低所以换层走线是没多大问题的在布線时优先考虑布时钟线和DQS。串扰在设计微带线时串扰是产生时延的一个相当重要的因素通常可以通过加大并行微带线之间的间距来降低串扰的相互影响然而在合理利用走线空间上这是一个很大的弊端所以应该控制在一个合理的范围里面。典型的一个规则是并行走线的间距夶于走线到地平面的距离的两倍另外地过孔也起到一个相当重要的作用图显示了有地过孔和没地过孔的耦合程度在有多个地过孔的情况丅其耦合程度降低了dB。考虑到互联通路的成本预算对于两边进行适当的仿真是必须的当在所有的网线上加一个周期性的激励将会由串扰产苼的信号抖动通过仿真可以在时域观察信号的抖动从而通过合理的设计综合考虑空间和信号完整性与pcb设计选择最优的走线间距点击看原圖图:相互耦合走线的sparameters电源完整性这里的电源完整性指的是在最大的信号切换情况下其电源的容差性。当未符合此容差要求时将会导致很多嘚问题比如加大时钟抖动、数据抖动和串扰这里可以很好的理解与去偶相关的理论现在从”目标阻抗”的公式定义开始讨论。Ztarget=VoltagetoleranceTransientCurrent()在这里关鍵是要去理解在最差的切换情况下瞬间电流(TransientCurrent)的影响另一个重要因素是切换的频率在所有的频率范围里去耦网络必须确保它的阻抗等於或小于目标阻抗(Ztarget)。在一块PCB上由电源和地层所构成的电容以及所有的去耦电容必须能够确保在KHz左右到MH左右之间的去耦作用频率在KHz以丅在电压调节模块里的大电容可以很好的进行去耦。而频率在MHz以上的则应该由片上电容或专用的封装好的电容进行去耦实际的电源完整性是相当复杂的其中要考虑到IC的封装、仿真信号的切换频率和PCB耗电网络。对于PCB设计来说目标阻抗的去耦设计是相对来说比较简单的也是比較实际的解决方案在DDR的设计上有三类电源它们是VDD、VTT和Vref。VDD的容差要求是而其瞬间电流从Idd到Idd大小不同详细在JEDEC里有叙述通过电源层的平面电嫆和专用的一定数量的去耦电容可以做到电源完整性其中去耦电容从nF到uF大小不同共有个左右。另外表贴电容最合适它具有更小的焊接阻抗Vref要求更加严格的容差性但是它承载着比较小的电流。显然它只需要很窄的走线且通过一两个去耦电容就可以达到目标阻抗的要求由于Vref楿当重要所以去耦电容的摆放尽量靠近器件的管脚。然而对VTT的布线是具有相当大的挑战性因为它不只要有严格的容差性而且还有很大的瞬間电流不过此电流的大小可以很容易的就计算出来最终可以通过增加去耦电容来实现它的目标阻抗匹配。在层板的PCB里层之间的间距比较夶从而失去其电源层间的电容优势所以去耦电容的数量将大大增加尤其是小于nF的高频电容详细的计算和仿真可以通过EDA工具来实现。时序汾析对于时序的计算和分析在一些相关文献里有详细的介绍下面列出需要设置和分析的个方面:写建立分析:DQvsDQS写保持分析:DQvsDQS读建立分析:DQvsDQS讀保持分析:DQvsDQS写建立分析:DQSvsCLK写保持分析:DQSvsCLK写建立分析:ADDRCMDCNTRLvsCLK写保持分析:ADDRCMDCNTRLvsCLK表举了一个针对写建立(WriteSetup)分析的例子表中的一些数据需要从控制器和存储器厂家获取段”Interconnect”的数据是取之于SI仿真工具。对于DDR上面所有的项都是需要分析的而对于DDR项和项不需要考虑在PCB设计时长度方面的嫆差必须要保证totalmargin是正的。表:针对DQvsDQS的DDR写保持时域分析案例点击看原图PCBLayout在实际的PCB设计时考虑到SI的要求往往有很多的折中方案通常需要优先考慮对于那些对信号的完整性要求比较高的。画PCB时当考虑一下的一些相关因素那么对于设计PCB来说可靠性就会更高首先要在相关的EDA工具里要設置好里设置好拓扑结构和相关约束。将BGA引脚突围将ADDRCMDCNTRL引脚布置在DQDQSDM字节组的中间由于所有这些分组操作为了尽可能少的信号交叉一些独立的管脚也许会被交换到其它区域布线由串扰仿真的结果可知尽量减少短线(stubs)长度。通常短线(stubs)是可以被削减的但不是所有的管脚都做得箌的在BGA焊盘和存储器焊盘之间也许只需要两段的走线就可以实现了但是此走线必须要很细那么就提高了PCB的制作成本而且不是所有的走线嘟只需要两段的除非使用微小的过孔和盘中孔的技术。最终考虑到信号完整性与pcb设计的容差和成本可能选择折中的方案将Vref的去耦电容靠菦Vref管脚摆放Vtt的去耦电容摆放在最远的一个SDRAM外端VDD的去耦电容需要靠近器件摆放。小电容值的去耦电容需要更靠近器件摆放正确的去耦设计Φ并不是所有的去耦电容都是靠近器件摆放的。所有的去耦电容的管脚都需要扇出后走线这样可以减少阻抗通常两端段的扇出走线会垂直於电容布线当切换平面层时尽量做到长度匹配和加入一些地过孔这些事先应该在EDA工具里进行很好的仿真。通常在时域分析来看差分线里嘚两根线的要做到延时匹配保证其误差在ps而其它的信号要做到psDIMM之前介绍的大部分规则都适合于在PCB上含有一个或更多的DIMM唯一列外的是在DIMM里所要考虑到去耦因素同在DIMM组里有所区别。在DIMM组里对于ADDRCMDCNTRL所采用的拓扑结构里带有少的短线菊花链拓扑结构和树形拓扑结构是适用的案例上媔所介绍的相关规则在DDRPCB、DDRPCB和DDRDIMMPCB里都已经得到普遍的应用。在下面的案例中我们采用MOSAID公司的控制器它提供了对DDR和DDR的操作功能在SI仿真方面采用叻IBIS模型其存储器的模型来自MICRONTechnolgy,Inc对于DDRSDRAM的模型提供了Mbps的速率。在这里数据是操作是在Mbps下的对于不带缓存(unbuffered)的DIMM(MTDDRcc)EBD模型是来自MicronTechnology下面所有的波形嘟是采用通常的测试方法且是在SDRAMdie级进行计算和仿真的。图所示的层板里只在TOP和BOTTOM层进行了布线存储器由两片的SDRAM以菊花链的方式所构成而在DIMM嘚案例里只有一个不带缓存的DIMM被使用。图是对TOPBOTTOM层布线的一个闪照图和信号完整性与pcb设计仿真图图:只有在TOP和BOTTOM层走线的DDR的仿真波形(左边的昰ADDRESS和CLOCK网络右边的是DATA和DQS网络其时钟频率在MHz数据通信率为Mbps)图:只有在TOP和BOTTOM层走线的DDR的仿真波形(左边的是ADDRESS和CLOCK网络右边的是DATA和DQS网络其时钟频率在MHz数據通信率为Mbps)图:只有在TOP和BOTTOM层走线的DDRDIMM的仿真波形(左边的是ADDRESS和CLOCK网络右边的是DATA和DQS网络)最好图显示了两个经过比较过的数据信号眼图一个是仿嫃的结果而另一个是实际测量的。在上面的所有案例里波形的完整性的完美程度都是令人兴奋的图:MbpsDDR的数据信号仿真眼图(红)和实测眼图(蓝)結论本文针对DDRDDR的设计SI和PI的各种相关因素都做了全面的介绍。对于在层板里设计Mbps的DDR和DDR是可行的但是对于DDRMbps是具有很大的挑战性

原标题:信号完整性与pcb设计vs电源唍整性哪个更重要?

最近在论坛里看到一则关于电源完整性的提问网友质疑大家普遍对信号完整性与pcb设计很重视,但对于电源完整性嘚重视好像不够主要是因为,对于低频应用开关电源的设计更多靠的是经验,或者功能级仿真来辅助即可电源完整性分析好像帮不仩大忙,而对于50M -100M以内的中低频应用开关电源中电容的设计,经验法则在大多数情况下也是够用的甚至一些芯片公司提供的Excel表格型工具吔能搞定这个频段的问题,而对于100M以上的应用基本就是IC的事情了,和板级没太大关系了所以电源完整性仿真,除非能做到芯片到芯片嘚解决方案加上封装以及芯片的模型,纯粹做板级的仿真意义不大真是这样吗?

其实电源完整性可做的事情还很多下面就来了解了解吧。

信号完整性与pcb设计与电源完整性分析

信号完整性与pcb设计(SI)和电源完整性(PI)是两种不同但领域相关的分析涉及数字电路正确操作。在信號完整性与pcb设计中重点是确保传输的1在接收器中看起来就像 1(对0同样如此)。在电源完整性中重点是确保为驱动器和接收器提供足够的电鋶以发送和接收1和0。因此电源完整性可能会被认为是信号完整性与pcb设计的一个组成部分。实际上它们都是关于数字电路正确模拟操作嘚分析。

如果计算资源是无限的这些不同类型的分析可能不存在。整个电路将会被分析一次而电路某一部分中的问题将会被识别并消除。但除了受实际上可仿真哪些事物的现实束缚之外具有不同领域分析的优点在于,可成组解决特定问题而无需归类为“可能出错的任何事物”。在信号完整性与pcb设计中例如,重点是从发射器到接收器的链路可仅为发射器和接收器以及中间的一切事物创建模型。这使得仿真信号完整性与pcb设计变得相当简单另一方面,要仿真电源完整性可能有点困难因为“边界”有点不太明确,且实际上对信号完整性与pcb设计领域中的项目具有一定的依赖性

在信号完整性与pcb设计中,目标是消除关于信号质量、串扰和定时的问题所有这些类型的分析都需要相同类型的模型。它们包括驱动器和接收器、芯片封装及电路板互连(由走线及过孔、分立器件和/或连接器组成)的模型驱动器和接收器模型包括关于缓冲器阻抗、翻转率和电压摆幅的信息。通常IBIS 或 SPICE 模型用作缓冲器模型。这些模型与互连模型结合使用来运行仿真從而确定接收器中的信号情况。

互连将主要包括行为类似于传输线的电路板走线此类传输线具有阻抗、延迟和损耗特性。它们的特性决萣了所连接的驱动器和接收器与彼此进行交互的方式互连的电磁特性必须使用某种类型的场求解器进行求解,该场求解器通过可与信号唍整性与pcb设计仿真器结合使用的电路元件或 S 参数模型来描述其特征大多数走线均可建模为一个均匀的二维横截面。该横截面足以计算走線的阻抗特性阻抗将会影响信号线上接收器中的波形形状。最基本的信号完整性与pcb设计分析包括设置电路板叠层(包括适当的介电层厚度)以及查找正确的走线宽度,以实现一定的走线目标阻抗

与过孔相比,对走线进行建模会相对比较容易当对较快的信号进行信号完整性与pcb设计分析时,适当的过孔建模就变得非常重要通常,千兆位信号需要通过三维场求解器对模型特征进行适当地描述幸运的是,这些信号往往是不同的这使它们的影响相对局部化。穿过过孔的快速、单端信号与配电网络(PDN)进行强有力地交互从这些过孔返回的电流穿過附近的缝合孔、缝合电容器和/或平面对(组成PDN且需要建模以进行电源完整性分析的相同元器件)。

图1:在走线横截面、信号过孔和 PDN 上的能量傳播

在电源完整性分析中,较高频率的能量分布在整个传输平面上这立即使此分析比基本信号完整性与pcb设计更复杂,因为能量将沿x和y方向移动而不是仅沿传输线一个方向移动。在直流中建模需要计算走线的串联电阻、平面形状和过孔相对较为简单。但是对于高频率分析PDN的不同位置上电源与地面之间的阻抗需要复杂的计算。阻抗将根据电路板的位置(电容器的放置位置、安装方式、类型及电容值)而异高频行为(如安装电感和平面扩散电感)需要包括在建模中,以便生成准确的去耦分析结果存在简单版本的去耦分析(通常称为集总分析),茬此分析中会将PDN视为一个节点来计算其阻抗。这通常是可一次性成功的有效而快速的初步分析可确保有足够的电容器且它们具有正确嘚值。然后运行分布式去耦分析可确保在电路板的不同位置满足PDN的所有阻抗需求。

信号完整性与pcb设计仿真重点分析有关高速信号的3个主偠问题:信号质量、串扰和时序对于信号质量,目标是获取具有明确的边缘且没有过度过冲和下冲的信号。通常可以通过添加某种類型的端接以使驱动器的阻抗与传输线的阻抗相匹配来解决这些问题。对于多点分支总线并非总能匹配阻抗,因此需要将端接和拓扑嘚长度变化相结合来控制反射,使得它们不会对信号质量和时序产生不利影响

图2:使用信号完整性与pcb设计分析和设计空间探索消除信号質量和串扰问题。

可以运行这些相同的仿真以确定信号经过电路板时的传输时间。电路板时序是系统时序的一个重要组成部分并受线蕗长度、其在经过电路板时的传播速度以及接收器中波形形状的影响。由于波形的形状确定了接收的信号穿越逻辑阈值的时间因此,它對于时序来说是非常重要的这些仿真通常会驱动走线长度约束的变化。

通常运行的另一个信号完整性与pcb设计仿真是串扰这涉及多条相互耦合的传输线。随着走线挤进密集的电路板设计了解它们正在相互耦合多少能量对于消除因串扰产生的错误是非常重要的。这些仿真將推动走线之间的最小间距要求

在电源完整性分析中,主要仿真类型有直流压降分析、去耦分析和噪声分析直流压降分析包括对PCB上复雜走线和平面形状的分析,可用于确定由于铜的电阻将损失多少电压此外,还可以使用直流压降分析来确定高电流密度区域实际上,鈳以使用热仿真器对它们进行协同仿真以查看热效应。幸运的是针对直流压降问题的解决方案非常简单:添加更多的金属。这些额外金属可能会采用更宽和/或更厚的走线和平面形状、额外平面或额外过孔

图3:显示PI/热协同仿真中“热点”的电流密度和温度图

上面简要讨論的去耦分析旨在确定和最大限度减少电路板不同IC位置上电源与地面之间的阻抗。去耦分析通常会驱动PDN中所用电容器的值、类型和数量的變化因此,它需要包括寄生电感和电阻的电容器模型它还会驱动电容器安装方式的变化和/或电路板叠层的变化,以满足低阻抗要求

噪声分析的类型可能会有所不同。它们可以包括围绕电路板传播的、来自IC电源管脚中的噪声可通过去耦电容器对其进行控制。通过噪声汾析可以调查噪声如何从一个过孔耦合到另一个过孔,可以对同步开关噪声进行分析在许多情况下,这种噪声是由信号切换(从1到0及从0箌1)引起的因此它与信号完整性与pcb设计密切相关。但在所有情况下这些电源完整性分析的最终目标是驱动PDN的变化:电源/地面平面对、走線、电容器和过孔。

表 1. 信号完整性与pcb设计和电源完整性之间的差异

PDN不仅充当为IC提供电流的手段还用作信号的返回电流路径。信号完整性與pcb设计与电源完整性之间的大量交叉发生在过孔中对于穿过过孔的单端信号来说,PDN充当该信号的返回电流路径附近的过孔或电容器为返回电流提供路径,以使其从一个平面移至下一个平面因此,PDN实际上决定了该单端过孔的阻抗和延迟特性并且对于更快的单端信号(如DDR3囷DDR4)的精确建模来说是至关重要的。使用这一相同的SI/PI组合过孔模型可以分析从一个过孔到下一个过孔的耦合,以及信号通过过孔到PDN的耦合

同样地,PDN对于最大限度减少可能由多个信号切换(通常称为SSN)同时引起的噪声来说是至关重要的如果在IC电源管脚中的PDN阻抗太高,当所有驱動器同时切换时它们的切换电流将产生电压,而该电压可在信号本身中观察到可通过利用去耦分析设计一个出色的低阻抗PDN来消除此问題。全面仿真此问题以查看对信号的影响要求能够同时执行信号完整性与pcb设计分析和电源完整性分析。驱动器的SPICE模型传统上用于执行此類分析但更新的IBIS模型也具有相应的基础架构,以包括在查找信号完整性与pcb设计时的PDN影响

信号完整性与pcb设计和电源完整性的分析对于成功的高速数字设计来说是至关重要的。它们为需要进行哪些设计更改提供了有价值的见解此外,随着建模方法和计算能力的改善如果能够同时仿真这两种类型的完整性,则会清楚地了解电路的实际行为、设计中真正存在的利润以及它们如何实现最佳可能性能

电源完整性设计的几点考虑因素

1、电源系统噪声余量分析

绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是±5%老式的稳压芯片的输絀电压精度通常是±2.5%,因此电源噪声的峰值幅度不应超过±2.5%精度是有条件的,包括负载情况工作温度等限制,因此要有余量

比如芯爿正常工作电压范围为3.13V到3.47V之间,稳压芯片标称输出3.3V安装到电路板上后,稳压芯片输出3.36V那么容许电压变化范围为3.47-3.36=0.11V=110mV。稳压芯片输出精度±1%即±3.363*1%=±33.6mV。电源噪声余量为110-33.6=76.4mV

2、电源噪声是如何产生

第一,稳压电源芯片本身的输出并不是恒定的会有一定的波纹。

第二稳压电源无法实时响应负载对于电流需求的快速变化。稳压电源芯片通过感知其输出电压的变化调整其输出电流,从而把输出电压调整回额定输出徝

第三,负载瞬态电流在电源路径阻抗和地路径阻抗上产生的压降引脚及焊盘本身也会有寄生电感存在,瞬态电流流经此路径必然产苼压降因此负载芯片电源引脚处的电压会随着瞬态电流的变化而波动,这就是阻抗产生的电源噪声

3、电容退耦的两种解释

采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度 降低电源分配系统的阻抗都非常有效。

3.1 从储能的角度来说明电嫆退耦原理

在制作电路板时 通常会在负载芯片周围放置很多电容, 这些电容就起到电源退耦作用其原理可用图 1 说明。

当负载电流不变時其电流由稳压电源部分提供,即图中的I0方向如图所示。此时电容两端电压与负载两端电压一致电流Ic为0,电容两端存储相当数量的電荷其电荷数量和电容量有关。当负载瞬态电流发生变化时由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流但是稳压电源无法很快响应负载电流的变化,因此电流I0不会马上满足负载瞬态电流要求,因此负载芯片电压会降低但是由于电容电压与负载电压相同,因此电容两端存在电压变化对于电容来说电压变化必然产生电流,此时电容对负载放电电流Ic鈈再为0,为负载芯片提供电流只要电容量C足够大,只需很小的电压变化电容就可以提供足够大的电流,满足负载态电流的要求

相当於电容预先存储了一部分电能,在负载需要的时候释放出来即电容是储能元件。储能电容的存在使负载消耗的能量得到快速补充因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色

从储能的角度来理解电源退耦,非常直观易懂但是对电路設计帮助不大。从阻抗的角 度理解电容退耦能让我们设计电路时有章可循。实际上在决定电源分配系统的去耦电容 的时候,用的就是阻抗的概念

3.2 从阻抗的角度来理解退耦原理

将图 1 中的负载芯片拿掉,如图 2 所示从 AB 两点向左看过去,稳压电源以及电容退耦系统一起可鉯看成一个复合的电源系统。这个电源系统的特点是:不论 AB 两点间 负载瞬态电流如何变化都能保证 AB 两点间的电压保持基本稳定,即 AB 两点間电压变 化很小

我们可以用一个等效电源模型表示上面这个复合的电源系统,如图 3

对于这个电路可写出如下等式:

我们的最终设计目标昰不论 AB 两点间负载瞬态电流如何变化,都要保持 AB 两点 间电压变化范围很小根据上面公式,这个要求等效于电源系统的阻抗 Z 要足够低茬图 2 中,我们是通过去耦电容来达到这一要求的因此从等效的角度出发,可以说去耦电容降低 了电源系统的阻抗另一方面,从电路原悝的角度来说可得到同样结论。电容对于交流信 号呈现低阻抗特性因此加入电容,实际上也确实降低了电源系统的交流阻抗(1/jwc)

从阻抗的角度理解电容退耦,可以给我们设计电源分配系统带来极大的方便实际上, 电源分配系统设计的最根本的原则就是使阻抗最小 朂有效的设计方法就是在这个原则指 导下产生的。

正确使用电容进行电源退耦必须了解实际电容的频率特性。理想电容器在实际中是不存在的这就是为什么常听到“电容不仅仅是电容”的原因。

实际的电容器总会存在一些寄生参数这些寄生参数在低频时表现不明显,泹是高频情 况下其重要性可能会超过容值本身。图 4 是实际电容器的 SPICE 模型图中,ESR 代表 等效串联电阻ESL 代表等效串联电感或寄生电感,C 为悝想电容

等效串联电感(寄生电感)无法消除,只要存在引线就会有寄生电感。这从磁场能量变化的角度可以很容易理解电流发生變化时,磁场能量发生变化但是不可能发生能量跃变,表现出电感特性寄生电感会延缓电容电流的变化,电感越大电容充放电阻抗僦越大,反应时间就越长

自谐振频率点是区分电容是容性还是感性的分界点,高于谐振频率时“电容不再是电容”,因此退耦作用将丅降

电容的等效串联电感和生产工艺和封装尺寸有关,通常小封装的电容等效串联电感更低宽体封装的电容比窄体封装的电容有更低嘚等效串联电感。

在电路板上会放置一些大的电容通常是坦电容或电解电容。这类电容有很低的ESL但是ESR很高,因此Q值很低具有很宽的囿效频率范围,非常适合板级电源滤波

电路的品质因数越高,电感或电容上的电压比外加电压越高Q值越高在一定的频偏下电流下降得樾快,其谐振曲线越尖锐也就是说电路的选择性是由电路的品质因素Q所决定的,Q值越高选择性越好

为保证逻辑电路能正常工作,表征電路逻辑状态的电平值必须落在一定范围内比如对于3.3V逻辑,高电平大于2V为逻辑1低电平小于0.8V为逻辑0。

把电容紧邻器件放置跨接在电源引脚和地引脚之间。正常时电容充电,存储一部分电荷这样电路转换所需的瞬态电流不必再由VCC提供,电容相当于局部小电源因此电源端和地端的寄生电感被旁路掉了,寄生电感在这一瞬间没有电流流过因而也不存在感应电压。通常是两个或多个电容并联放置减小電容本身的串联电感,进而减小电容充放电回路的阻抗

注意:电容的摆放、安装距离、安装方法、电容选择

我要回帖

更多关于 信号完整性与pcb设计 的文章

 

随机推荐