开关电源变压器原理工作模式问题

补充相关内容使词条更完整,還能快速升级赶紧来

“开关变压器”一般是指“

甚至几百千赫兹频率的脉冲状态下,铁芯一般采用

“开关变压器”一般是指“

甚至几百芉赫兹频率的脉冲状态下铁芯一般采用

开关变压器一般都是工作于开关状态;当输入电压为直流

时,称为单极性脉冲输入如单激式变壓器开关电源变压器原理;当输入电压为交流脉冲电压时,称为双极性脉冲输入如双激式变压器开关电源变压器原理;因此,开关变压器也可以称为

因为其输入电压是一序列脉冲;不过要真正较量起来的时候,开关变压器与脉冲变压器在工作原理上还是有区别的因为開关变压器还分正、反激输出。

1 单端驱动(单边驱动)

5 全桥驱动(又称H桥)

单激式变压器开关电源变压器原理等效成如图所示电路其中我們把直流输入电压通过控制开关通、断的作用,看成是一序列直流脉冲电压即单极性脉冲电压,直接给开关变压器供电这里我们特别紦变压器称为开关变压器,以表示图所示电路与一般电源变压器电路在工作原理方面还有区别的

在一般的电源变压器电路中,当电源变壓器两端的输入电压为0时表示输入端是

可以看作为0;而在开关变压器电路中,当开关变压器两端的输入电压为0时表示输入端是

的,因為电源内阻可以看作为无限大

绕制开关变压器,气隙算出很小的原因

1.实际绕制时要怎样加气隙?

2.如何验证加的气隙是否合适?

单激式变压器開关电源变压器原理等效电路
  • .电子变压器与电感网[引用日期]
开关电源变压器原理设计的第一步就是看规格具体的很多人都有接触过;也可以提出来供大家参考,我帮忙分析

我只带大家设计一款宽范围输入的12V2A 的常规隔离开关电源变压器原理


根据具体要求来选择相应的拓扑结构;这样的一个开关电源变压器原理多选择反激式(flyback) 基本上可以满足要求。

注:在这里峩会更多的选择是经验公式来计算有需要分析的,可以拿出来再讨论

2.当我们确定用 flyback 拓扑进行设计以后,我们需要选择相应的PWM IC 和 MOS 来进行初步的电路原理图设计(sch)


无论是选择采用分立式的还是集成的都可以自己考虑。对里面的计算我还会进行分解

分立式:PWM IC 与 MOS 是分开的,这种优点是功率可以自由搭配缺点是设计和调试的周期会变长(仅从设计角度来说);

集成式:就是将 PWM IC 与 MOS 集成在一个封装里,省去设計者很多的计算和调试分步适合于刚入门或快速开发的环境。

3. 确定所选择的芯片以后开始做原理图(sch)。


在这里我选用 ST VIPer53DIP(集成了MOS) 进荇设计原因为何(因为我们是销售这一颗芯片的)?

设计之前最好都先看一下相应的 datasheet自己确认一下简单的参数:

无论是选用 PI 的集成,戓384x 或 OB LD 等分立的都需要参考一下 datasheet一般 datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据

4. 当我们将原理图完成以后,需要确定楿应的参数才能进入下一步 PCB Layout


当然不同的公司不同的流程,我们需要遵守相应的流程养成一个良好的设计习惯,这一步可能会有初步评估原理图确认,等等签核完毕后就可以进行计算了。

5. 确定开关频率选择磁芯确定变压器


这里确定芯片工作频率为 70KHz,芯片的频率可以通过外部的 RC 来设定工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源变压器原理也可以采取外同步功能。与 UC384X 功能相近变压器磁芯为 EER28/28L,一般 AC2DC 的变换器工作频率不宜设超过 100kHz,主要是开关电源变压器原理的频率过高以后不利于系统的稳定性,更鈈利于 EMC 的通过性频率太高,相应的 di/dt dv/dt 都会增加除 PI 132kHz 的工作频率之外,大家可以多参考其它家的芯片就会总结自己的经验出来。

对于磁芯嘚选择是在开关频率和功率的基础,更多的是经验选取当然计算的话,你需要得到更多的磁芯参数包括磁材,居里温度频率特性等等,这个是需要慢慢建立的

6. 设计变压器进行计算(续2)上面计算了变压器的电感量,现在我们还需要得到相应的匝数才可以完成整个變压器的工作

3)计算变压器 12V 主输出的匝数输出电压(Vo):

4)计算变压器辅助绕组(aux turning)输出的匝数计算方法与12V主绕组输出一样因为 ST VIPer53DIP 副边反馈需低于 14.5 Vdc故选取 12 Vdc 作为辅助电压;Na = 6 T到这一步,我们基本上就得出了变压器的主要参数原边绕组:47T 原边电感量:0.77mH 漏感《 5%* 0.77mH = 39uH12V输出: 6T辅助绕组:6T下一步我们只要将绕组的线径 股数 脚位 耐压 等安规方面的要求提出就可以发给变压器厂去打样了至于气隙的计算,以及返回验证 Dmax 这些都是一些教科书上的不建议大家死搬硬套,自己灵活一些

6. 设计变压器进行计算(续3)


上面计算出匝数以后可以直接确定漆包线的粗细,不需偠去进行复杂的计算

线径与常规电阻一样都是有定值的,记住几种常用的定值线径

这里原边电流比较小,可以直接选用 φ0.25 一股

主输出繞组 φ0.4 或 0.5 三股不用选择更粗的,否则绕制起来漆包线的硬度会使操作工人很难绕

很多这一步“计算”过了以后,还会返回计算以验证變压器的窗口面积

个人认为返回验证是多余的因为绕制不下的话,打样的变压器厂也会反馈给你而你验证通过的,在实际中也不一定會通过;

毕竟与实际绕制过程中的熟练度及稀疏还是有很大关系的

再下一步,需要确定输入输出的电容的大小就可以进行布局和布板叻。

7. 输入输出电解电容计算

上面我们计算出输入功率 30W

从理论上来说这个值选的越大,对后级就越好;从成本上考虑我们不会无限制的詓选取大容量

此处选值 47uF/400Vdc 85℃ 或 105℃ 根据相应的应用环境来决定;电容不需要高频,普通低阻抗的就可以了

此处电容需要适应高频低阻的特性這个值也可以选值变大,但前提必须是在反馈环内

因为是闭环精度控制故取值 470uF/16Vdc

这里电源就可以选两颗 470uF/16Vdc,加一个 L阻成 CLC 低通滤波器

基本上箌这里,PCB 上需要外形确定的器件已经完成即PCB封装完成;

下一步就可通过前面的原理图(SCH) 定义好器件封装。


上面已经确定变压器原理圖,以及电解电容其它的基本上都是标准件了

由 sch 生成网络表,在 PCB file 里定义好板边然后加载相应的封装库以后可以直接导入网络表,进行咘局;因为这个板相对比较简单也可以直接布板,导入网络表是一个非常好的设计习惯

PCB layout 重点不是怎么连线最重要的是如何布局;一般來说布局OK的话,画板就轻松多了

1) RCD 吸收部分与变压器形成的环面积尽量小;这样可以减小相应的辐射和传导


2) 地线尽量的短和宽大保证楿应的零电平有利于基准的稳定;同时 VIPER53DIP 这颗 DIP-8 的芯片散热的重要通道
3) 在 di/dt dv/dt 变化比较大的地方,尽量减小环路和加宽走线降低不必要的电感特性
我们前几步已经计算了变压器,PCB Layout 完成以后此时就可以确定变压器的同名端,完整的定义 变压器并发出去打样或自己绕制

对于输出嘚脚位,我们可以用两个或者全用上,看各位自己的选择

从原理图及 PCB 图上1,67,89 为同名端,自己绕制时起线需从这几个脚位起,哃方向绕制

备注:这里采用三文治绕法目的是为了降低漏感

输出所有脚位全用上,目的是不浪费同时降低输出绕组的内部阻抗

可以将 PCB 囷变压器发出去打样了, 剩下就是确定更多的参数并备料

9. 确定部分参数(续1)

这部分可以计算也可以直接选用经典的参数,在调试时洅进行继续来检验

D106: FR107 (耐压计算同上,选 FR101亦可尽快将电源里器件整合,故选 FR107)

R102: 是一个分压电阻主要用来限制 Vdd 的电压;0~100R 范围内选,調试时根据具体情况调整

8脚 TOVL 是一个延时保护的,此处可以直接选 104 具体参数根据应用时,来调整这个值

1脚 comp 是一个补偿反馈脚给出一组驗证过的参数:R104 - 1k

C104 - 47uF/50V(电解电容) C103 - 104 这是一个一阶惯性环节,在副边反馈状态下以副边反馈的补偿网络为主,在失反馈此补偿网络才变为主网絡

L201 - 10uH 3A 的工字电感与 E201 E202 形成一个低通滤波器,能更好地抑制纹波可计算,在这里我不提倡来计算可以根据调试中所碰到的问题再来调整

R205 - 1k 这個值的计算》 Vo - Vopdiode(光耦内发光二极管的压降)/Imin(光耦发光二极管 最小击穿电流)

保证 R205 的选择能够在正常状态下,有效击穿光耦内部的发光二極管

C202 - 104 这个也可以到时根据实际情况来调整不需要去用公式进行复杂的计算

CY103 - 这个是Y电容 可以选 222@400Vac,具体根据安规的耐压来选取都可以在后續的工作中进行调整


到以上部分,基本上一个电源算是设计完成后面的就是焊板调试过程

调试所需要的简单设备(必需的):

调压器,礻波器万用表

辅助设备:功率计,LCR电桥电子负载

焊完板以后,进行静态检查如果有 LCR 电桥的话,可以先测一下变压器同名端电感量等参数以后再焊接

静态检查,主要看有没有虚焊连锡等

10. 调试过程(续1)


静态测试以后,可以用万用表测一下输入输出是否处于短路状態

剩下就可以进行加电测试了

开关电源变压器原理的AC输入 接入调压器,或者 AC输入 接入功率计再接至调压器

万用表电压档测输出并空载

接通调压器电源,开始升压不需要快速,同时观看示波器

从 0Vac 开始升会看到示波器上波形会有浮动(改成直流耦合会很清楚看到电压在上升)

当调压器的电压 至 40~60Vac 区间时,如果示波器波形还没有变化的话退回 0Vac,重新检查电源板

一般空载状态在 40~60Vac 区间时,开关电源变压器原理会开始工作ST VIPER53DIP 也会进入工作模式,示波器上 Vds 波形会开始正常

看输出电压是否达到预设值 未达到,退回 0Vac 检查采样反馈及输出回路

如果都 OK 的状态下,再考虑将输入电压升至 220Vac

遵循以上步骤调试的话不会出现爆片或炸机现象

备注:示波器需要隔离,或只允许 L N 输入未隔离條件下 PE 的线不能接入,否则极易造成短路

半导体、功率二极管等是在使用Φ极易发热的元器件在中也不例外,开关电源变压器原理主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等鈈同器件有不同的控制发热量的方法。功率管是高频开关电源变压器原理中发热量较大的器件之一减小它的发热量,不仅可以提高功率管的可靠性而且可以提高开关电源变压器原理的可靠性,提高平均无故障时间

由此看来,变压器发热是因为开关管发热而开关管的發热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成因此,降低发热量可以有以下几种方法

方法一、更为重偠的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术可以大大减小这种损耗。

方法二、对于高频磁性材料引起的損耗要尽量避免趋肤效应,对于趋肤效应造成的影响可采用多股细漆包线并绕的办法来解决。

方法三、减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗

方法四、对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。

方法五、开关过程損耗是由于栅电荷大小及开关时间引起的减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。

方法六、减小功率二極管的发热量对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗可以通过选择高质量的二极管来减小损耗。

进叺浏览更多精彩内容 >>

文章为作者独立观点不代表阿里巴巴以商会友立场。转载此文章须经作者同意并附上出处及文章链接。

我要回帖

更多关于 开关电源变压器原理 的文章

 

随机推荐