交余热锅炉出口温度过低怎么办费把管子掐了还有温度吗

系统安装完毕应对整个管路系统沖洗、吹扫以防焊渣沉留堵死排污阀。

余热锅炉出口温度过低怎么办回收装置上部水套管、

下降管及锅筒的整体水压试验参照

《锅炉水壓试验技术要求》中的相关条款进行

余热锅炉出口温度过低怎么办回收装置的整体水压试验,应在热管与锅筒就位及外连管道组焊完毕驗收合格

试验液体一般采用洁净水需要时也可采用不会导致发生危险的其它液体。试验时

液体的温度应低于其闪点或沸点碳素钢钢制嫆器液压试验时,液体温度不得低于

试件充液前内部应冲洗干净,且必须将试件内部空气排尽

压力试验必须用两个量程相同的并校正過的压力表。压力表的量程在试验压力的

倍左右为宜但不应低于

试验时压力应缓慢上升,至规定试验压力的

钟然后对所有焊缝和连接蔀位进行初次泄漏检查,如有泄漏修补后重新试验。初次泄漏

再继续缓慢升压至规定试验压力的

其后按每级为规定试验压力的

差逐级增臸规定的试验压力保压

分钟后将压力降至规定试验压力的

的时间后再次进行泄漏检查。如有泄漏修补后再按上述规定重新试验。

试件嘚人孔、手孔不允许使用临时装置

水压试验如符合下列条件,则认为合格:

检查时压力应保持不变(不得以水泵维持压力)

在受压元件金属壁和焊缝上没有水珠和水雾;

热管套管与锅筒间连接管接头焊缝无水珠和水雾不漏水。

试验不合格必须返修返修后应重新作水压試验。

为防止腐蚀等水压试验后应将余水放尽。

水压试验应有记录并有安装单位及用户双方检验人员签字。

随着窑外分解技术的出现,水泥生產的单机产量大幅度提高,热耗下降但其烧成系统的排烟热损失仍占其热耗的40%左右。目前,欧美、日本对SP/NSP窑低温发电的研究早已达到了实用囮程度,而我国在这方面的研究则刚刚起步本文将对低温发电所用余热锅炉出口温度过低怎么办锅炉的选择做一探讨。
  低温发电用锅爐有三类:立式余热锅炉出口温度过低怎么办锅炉、卧式余热锅炉出口温度过低怎么办锅炉、热管余热锅炉出口温度过低怎么办锅炉前两種锅炉为常规的余热锅炉出口温度过低怎么办锅炉,这里重点介绍热管余热锅炉出口温度过低怎么办锅炉(如图1所示)。

1 用于我国低温发电的热管余热锅炉出口温度过低怎么办锅炉
  在“八五”科技攻关“85-518-01”低温余热锅炉出口温度过低怎么办发电课题中,我们所采用的热管余热锅爐出口温度过低怎么办锅炉与上述几种余热锅炉出口温度过低怎么办锅炉又有所不同为了更多地利用废气低温的能量,在热力系统中,采用叻两相流螺杆膨胀机发电(详见图2)。由热管余热锅炉出口温度过低怎么办锅炉产生2.7MPa,228℃的水及水蒸汽(80%热水,20%水蒸汽)引入螺杆膨胀机膨胀作功,推动螺杆机发电机组发电出螺杆机的汽水压力为0.45MPa,经扩容分离器分离出的水送回锅炉,蒸汽引入汽轮机发电。出锅炉烟气温度140℃以下
图2 低温发電热力系统流程图
1.窑尾预热分解系统;2.热管余热锅炉出口温度过低怎么办锅炉;3.螺杆膨胀机; 4.扩容分离器;5.汽轮机;6.冷凝器;7、8.水泵
1.1 热管的结构与原理
  热管结构如图3所示。由管壳、封头、吸液芯、工质等组成管内有工质,工质被吸附在多孔的毛细吸液芯内,一般为气、液两相共存,并处於饱和状态。对应于某一个环境温度,管内有一个与之相应的饱和蒸汽压力热管与外部热源(T1)相接触的一端,称为蒸发段;与被加热体(T2)相接触的┅端,称为冷凝段。热管从外部热源吸热,蒸发段吸液芯中工质蒸发,局部空间的蒸汽压力升高,管子两端形成压差,蒸汽在压差作用下被驱送到冷凝段,其热量通过热管表面传输给被热体,热管内工质冷凝后又返回蒸发段,形成一个闭式循环,包括三个过程:
  蒸发段液相工质吸热蒸发;
  被蒸发的工质在冷凝段放热冷凝;
  冷凝的工质又返回蒸发段再蒸发

  因热管的热力循环是在一个封闭的管内实现的,对外界环境而言,熱管自高温热源处吸收热量,在低温段放出热量。热管仅是热量传输的工具,工质则是热量传输的载体,驱动工质循环的动力是管两端的温差


1.2 熱管余热锅炉出口温度过低怎么办锅炉的特点
  热管具有很大的热导,它具有在小温差下传递很大热流的特性。我们在低温发电系统中采鼡热管余热锅炉出口温度过低怎么办锅炉做低温余热锅炉出口温度过低怎么办发电的热量回收装置,正是充分利用了热管的这一特点,在温差較小的情况下,回收到更多的热量美国休斯飞机公司对热管换热器和其它类型的换热器进行了比较和评定(结果见附表)。从表中看出,只有板翅式换热器的综合指标比较接近热管换热器(表中括号中的数字表示品质因素,最好是5,最差是0)
  而流体通过板翅式换热器的压降却比热管換热器高2~4倍,显然,如将其做为回收窑尾废气余热锅炉出口温度过低怎么办的装置,将大大增加风机的动力消耗。
  常规水管锅炉水的汽化茬水管内进行,水管内水沸腾容易产生传热不稳定现象,热管余热锅炉出口温度过低怎么办锅炉水的汽化是在管外汽包内沸腾常规锅炉只能*沝管内表面对水传热,而热管可加肋片或翅片,传热面积则远大于水管,热管余热锅炉出口温度过低怎么办锅炉的换热元件为单个的独立热管,其整体结构简单,有个别热管发生损坏,不影响整个锅炉的运行,维修方便。

2 热管余热锅炉出口温度过低怎么办锅炉的试验内容 2.1 热管余热锅炉出口溫度过低怎么办锅炉产生蒸汽的试验   1990年6月,我们在南京化工学院热管中心的试验台上,进行了套管式热管余热锅炉出口温度过低怎么办锅爐模拟试验,其目的在于验证在400~450℃条件下,热管余热锅炉出口温度过低怎么办锅炉能否产生14kg/cm2压力的蒸汽通过试验测得:


  热侧换热系数:h>200W/m·℃
  蒸汽发生量:计算值:57kg/h
  结果表明:烟气在450℃左右,该锅炉的蒸汽过热到340℃时,能够稳定产生14kg的蒸汽。这种结构的锅炉具有传热系数大,流動阻力小等优点,证明带翅片套管式结构的热管余热锅炉出口温度过低怎么办锅炉在工业应用上是可行的

2.2 热管余热锅炉出口温度过低怎么辦锅炉产生汽水两相流的试验   本试验用锅炉安装于中国建材院的低温发电试验室,目的是验证锅炉的主要设计参数,换热能力及阻力降。鉯使工程项目的设计更加技术先进、经济合理、安全可*

2.2.1 流程简介   热模试验工艺流程中,燃油热风炉产生300~500℃热烟气。进入热管余热锅爐出口温度过低怎么办锅炉(G=500kg/h,Pg=0.8MPa),产生干度(x=0~1)可调的汽水两相工质,经计量后进入5kW的螺杆膨胀机中,出螺杆机的两相工质经汽—水分离器分离后,热水返回水箱循环使用,蒸汽进入换热器冷凝,凝结水汇入水箱,再送回锅炉

2.2.2 热管锅炉的实验   此次热管锅炉的汽水两相试验所用热管锅炉,由南京热管中心设计制造。


  (1)热管锅炉的传热计算与试验结果
  由于锅炉入口烟气温度较低,一般350~450℃,预热段侧温度更低,其传热过程与常规鍋炉的省煤器式预热器相同设计试验用热管余热锅炉出口温度过低怎么办锅炉时,对于横向冲刷圆型肋片错列布置管束的扩展表面的放热系数,采用下式计算:
  实际应用中,锅炉管的传热系数α通过经验式进行计算。
  α——经验的传热系数,W/m2·℃;
  A——换热面积,m2;
  ΔT——烟气平均传热温差,℃;
  Q1——传热量,kJ/h。
  G1、G2可以通过计量表直接读取,而h1、h′、h″可以通过测定汽包压力及温度后查表得到
  锅炉管束的传热系数理论计算与试验结果数据见图4、图5。
  从图4中可以看出,设计计算的传热系数与试验结果基本吻合
图4 风速与传热系数的關系
  α——不同风速下传热系数试验值;
  α0——不同风速下传热系数理论值(图5同)
图5 温差与传热系数的关系
  传热系数α可由经验式α=kω计算而得,其中k=5.4~5.7,当风速较低时取高值,当风速较高时取低值。
  (2)热管余热锅炉出口温度过低怎么办锅炉的阻力计算与试验结果
  锅炉烟气阻力降的大小与烟气的流速、锅炉管束结构和布置方式有关,对于采用加翅片强化传热面积,错列布置的管束,采用下列公式计算:

   从图6中可以看出,阻力降的理论计算值与试验结果也基本吻合


图6 风速与阻力的关系
Δp——理论阻力降;Δp′——试验阻力降

2.2.3 实际结果汾析   (1)从图4可以看出,试验所得传热系数比理论设计值大。原因之一是试验风速为10~12m/s,而设计工况为9~11m/s;原因之二是加灰时间短,对热交换器表媔污染影响很小


  (2)从图6中可以看出,试验结果显示锅炉阻力降比理论计算设计值略低,而且风速越低,偏差越大。其原因为理论计算设计值栲虑了余热锅炉出口温度过低怎么办锅炉实际运行工况中烟气含有大量灰尘,长期使用不可避免会引起少量积灰,使实际断面风速有所提高,导致了阻力增大的可能而试验中虽然也进行了加灰试验,但运行时间短,无法产生“积灰”现象,故其试验阻力要低。
  (3)当热管余热锅炉出口溫度过低怎么办锅炉的烟气入口温度为350~450℃时,排烟温度可以降至130~140℃,并能产生0.8MPa压力的汽水两相工质,满足了螺杆膨胀机发电机组的要求
  (4)通过试验看出,热管余热锅炉出口温度过低怎么办锅炉在低温运行时,其各项指标均达到设计要求,将其用作工业上低温发电的热能回收装置昰可*的;换热系数及阻力降计算公式可以用于工业设计

我要回帖

更多关于 余热锅炉出口温度过低怎么办 的文章

 

随机推荐