请问:遥感影像提取图像分类和信息提取,本质上来讲是一个概念吗???

遥感图像处理_百度百科
遥感图像处理
图像处理(processing of remote sensing image data)是对中的图像进行辐射和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。遥感图像处理可分为两类:一是利用光学、照相和电子学的方法对遥感模拟图像(照片、底片)进行处理,简称为光学处理;二是利用计算机对遥感数字图像进行一系列操作,从而获得某种预期结果的技术,称为遥感数字图像处理[1]
遥感图像处理主要内容
遥感图像处理
影像数字图像处理的内容主要有:
1、图像恢复:即在、记录、传输或回放过程中引入的数据错误、噪声与畸变。包括辐射校正、几何校正等;
2、:以改进传输、存储和处理数据效率;
3、:突出数据的某些特征,以提高影像目视质量。包括、、边缘增强、密度分割、比值运算、去等;
4、:从经过增强处理的影像中提取有用的遥感信息。包括采用各种统计分析、集群分析、等自动识别与分类。通常利用专用数字图像处理系统来实现,且依据目的不同采用不同算法和技术。
遥感图像处理光学处理
图像的光学处理包括一般的照相处理、光学的几何纠正、分层叠加曝光、相关掩模处理、假彩色合成、电子分割和物理光学处理等。光学处理有时称为模拟处理。数字处理是指用计算机图像分析处理系统进行的遥感图像处理。遥感图像的数字处理往往与和专题制图仪的应用联系在一起。数字处理方式灵活,重复性好,处理速度快,可以得到高像质和高几何精度的图像,容易满足特殊的应用要求,因而得到广泛的应用。
遥感图像处理图像校正
遥感图像处理(电子工业出版社)
卫星的每次扫描有6个光—电转换器件平行工作,专题制图仪每次扫描有16个平行工作。因此,一次扫描可得到6行或16行。由于各个光—电转换器件的特性差异和电路,图像中各像元(像素)的值不能正确反映地物反射的电磁波强度,并且图像上还会出现条纹。因此,需要对原始图像数据的像元灰度值进行,这种校正称为辐射校正。在多光谱扫描仪中,辐射校正是通过对各个敏感元件的和漂移进行校正来达到的。 多光谱扫描仪和专题制图仪的图像存在一系列。
这是因为它们不是瞬间扫描而是用连续扫描的方法取得图像数据的。由于卫星的运动,扫描行并不垂直于运动轨迹方向,在扫描一幅图像的时间内地球自转一个角度而使图像扭歪。在给定视场角下,扫描行两侧的像元对应的地面面积比中间的大,地球的曲率更加大了这一误差。卫星的姿态变动和扫描速度不匀也使图像产生畸变。因此必须对图像进行几何纠正。根据已知的仪器参数及遥测的和姿态参数进行图像的几何纠正,称为系统纠正。需要用卫星图像制图时,系统纠正后的几何精度仍不能满足要求,则需要用地面控制点来进行图像的几何精纠正。若图像的几何误差分布是平面的、二次或三次曲面的,就可以用相应次数的多项式来。经过精纠正,图像的几何精度可达到均方误差在半个像元以内。
图像的辐射和几何纠正有时称为卫星图像预处理。通常可以向用户提供经过预处理的或图片。也有很多用户,宁愿使用原始的磁带数据而根据自己的应用要求进行处理。
遥感图像处理处理方法
遥感图像处理图像整饰处理
是提高图像的像质以利于分析解译应用的处理。增强、边缘增强和图像的复原都属于图像的整饰处理。
遥感图像处理
遥感图像处理空间域处理
是将卫星图像的像元虽然用256个来表示,但地物反射的电磁波强度常常只占256个等级中的很小一部分,使得图像平淡而难以解译,天气阴霾时更是如此。为了使图像能显示出丰富的层次,必须充分利用灰度等级范围,这种处理称为图像的灰度增强。
常用的增强方法有线性增强、分段线性增强、等概率分布增强、对数增强、指数增强和自适应灰度增强6种。
1、线性增强:把像元的灰度值线性地扩展到指定的最小和最大灰度值之间;
2、分段线性增强:把像元的灰度值分成几个区间,每一区间的灰度值线性地变换到另一指定的灰度区间;
3、等概率分布增强:使像元的概率接近直线的变换;
4、对数增强:扩展灰度值小的像元的灰度范围,压缩灰度值大的像元的灰度范围;
5、指数增强:扩展灰度值大的和压缩灰度值小的像元的灰度范围;
6、自适应灰度增强:根据图像的局部灰度分布情况进行灰度增强,使图像的每一部分都能有尽可能丰富的层次。
遥感图像处理图像卷积
是一种重要的图像处理方法,其基本原理是:像元的值等于以此像元为中心的若干个像元的灰度值分别乘以特定的后相加的平均值。由这些系数排列成的矩阵叫卷积核。选用不同的卷积核进行图像卷积,可以取得各种处理效果。例如,除去图像上的斑点使图像显得更为平滑;增强图像上景物的边缘以使图像锐化;图像上景物的边缘或特定方向的边缘等。常用的卷积核为3×3或5×5的系数矩阵,有时也使用7×7或更大的卷积核以得到更好的处理效果,但计算时间与卷积核行列数的乘积成正比地增加。
图像的灰度增强和卷积都是直接对图像的灰度值进行处理,有时称为图像的空间域处理。
遥感图像处理空间频率域处理
在中常用离散的,把信号转换成不同幅度和相位的频率分量,经滤波后再用傅里叶反变换恢复成信号,以提高信号的质量。图像是信息,可以用二维的离散傅里叶变换把图像的分布转换成分量。变化剧烈的部分对应于高的空间频率,变化缓慢的部分对应于低的空间频率。滤去部分高频分量可消除图像上的斑点条纹而显得较为,增强高频分量可突出景物的细节而使图像锐化,滤去部分低频分量可使图像上被成片阴影覆盖的部分的细节更清晰地显现出来。精心设计的滤波器能有效地提高图像的质量。经傅里叶变换、和反变换以提高图像质量的处理,有时称为图像的空间频率域处理。
遥感图像处理图像复原
理想的应当能真实地反映地物电磁波反射强度的,但实际上存在着各种使图像质量下降(退化)的因素。对于卫星多光谱图像,大气对电磁波的和,器的不完善,像元面积非无穷小,以及信号在电路中的失真和数字化采样过程,都会造成图像的退化。如果已知造成图像退化的数学模型,便可用计算机进行数字处理以消除退化因素的影响,使图像尽可能接近理想。这种处理称为,在几何纠正再采样过程中,同时进行图像的复原处理可以使图像的分辨率显著提高。
遥感图像处理算术运算
图像的算术运算是另一种增强方法。图像的相加和相乘,常被用于几种图像的复合。同一地点不同时期的两张图像配准后相减,可以突出地物的变化。不同谱段的两幅多光谱图像相除称为比值图像,它可用于消除图像上的阴影部分,加深不同类别地物的差别。
遥感图像处理
图像配准、和镶嵌:在多种遥感图像复合使用时,应当使同一地物在各图像上处于同一位置,这称为图像配准。图像配准与几何精纠正有相似的含义。前者指图像间的配准,而后者是遥感图像与地形图间的配准。当两幅图像较接近时可以用计算机进行自动配准。
用进行专题制图时,需要和地形图配准才能知道地物的确切位置。当比例尺较小时,各种投影的几何形状差别较大,通常先按地图投影的几何进行遥感图像的投影变换,然后再进行几何精纠正,以保证精度。
由于地图的分幅与遥感图像的分幅不同,当两者配准时总会遇到一幅地图包含两幅以至四幅遥感图像的情况。这时需要把几幅图像拼接在一起,这称为图像镶嵌。由于这些图像可能在不同日期经过不同处理后得到的,简单的拼接往往能看出明显的色调差别。为了得到色调统一的镶嵌图,要先进行各波段图像的匹配。例如,根据图像重叠部分具有相同的灰度平均值和方差的原则调整各图像的灰度值,以及利用自然界线(如河流、山脊等)作为拼接在边界而不是简单的矩形镶嵌。这样可使镶嵌图无明显的接缝。
遥感图像处理分析分类
在图像的实际使用中,常常需要从大量中提取特定用途的信息,这称为,常常还需要进行分类和类聚处理,以识别地物类型。
遥感图像处理主成分分析法
多光谱包含多个波段,数据量较大,当复合使用时数据量更大,往往难于直接使用。实际上各波段图像之间虽有差别,但也存在一定的相关关系。例如,明亮的物体反射的电磁波强度在各波段上虽有差别,但都比阴暗的物体反射的电磁波强度大。主分析法是用各波段图像数据的协方差矩阵的特征矩阵进行多图像数据的变换,以消除它们之间的相关关系。把大部分信息集中在第一主成分,部分信息集中在第二主成分,少量信息保留在第三主成分和以后各成分的图像上。因此,前面几个主成分就包含了绝大部分信息。主成分分析法有时称为。信息过分集中的主成分图像往往并不一定有利于分析应用。用计算机分类时,多光谱图像数据的波段数目越多,计算量就越大。对指定类别的分类常用各类别样区间的分离度作为指标,从已有波段中选取最佳的几个波段组合来进行分类。以尽可能少的波段来获得尽可能好的分类效果,这是另一种特征提取方法。在农、林等应用中,还可通过各波段图像间的算术运算或矩阵变换来得到能反映植物长势和变异的信息。多光谱的计算机分类,通常是建立在不同地物在各波段反射的电磁波强度差别的基础上的。若以各波段接收到的电磁波强度为坐标,则n个波段可形成n维波谱空间。各波段上同一像元对应于N维空间的一个点,而同类地物可形成一个点集。计算机分类的基本原理在于把波谱空间中的点集区分开来,常用的分类方法有监督分类法和无监督分类法两种。
遥感图像处理监督分类法
根据已知地物、选择各类别的区。计算各训练区内像元的平均值,以此作为类别中心并计算其协方差矩阵。对于图像各像元,则计算它们和各类别中心的距离。当离开某类别中心的距离最近并且不超过预先给定的距离值时,此像元即被归入这一类别。当距离超过给时,此像元归入未知类别,最大似然率法是常用的监督分类法。
遥感图像处理
遥感图像处理无监督分类法
根据各波段图像像元灰度分布的统计量,设定N个均值平均分布的类别中心。计算每个像元离开各类别中心的距离,并把它归入距离最近的一类。所有像元经计算归类后算出新的类别中心,然后再计算各个像元离开新类别中心的距离,并把它们分别归入离开新类别中心最近的一类。所有像元都重新计算归类完毕后,又产生新的类别中心。这样若干次,直到前后两次得到的类别中心之间的距离小于给定值为止。
遥感图像处理纹理分析法
根据像元在波谱空间的位置来分类,但不考虑地物在图像上的形状。纹理分析法是根据周围各像元的分布作为确定这个像元类别的一种方法。它也是一种较实用的分类方法。的一个像元中,往往包含多种地物,不同的地物也可能有相近的波谱特性。加上各种,使计算机分类的准确度受到一定的限制。除研制和改进器和分类方法外,使用多时相和多种遥感数据并与有关的数据库配合,可有效地提高分类的准确度。
遥感图像处理优点介绍
1.再现性好与模拟图像处理(光学处理)的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了,则数字图像处理过程始终能保持图像的再现。 2.处理精度高按,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。回想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。
遥感图像处理
3.适用面宽图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如图像、射线图像、超声波图像或等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、图像甚至图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的图像(彩色图像也是由组合成的,例如RGB图像由红、绿、蓝三个灰度图像组合而成)组合而成,因而均可用计算机来处理。即只要针对不同的图像,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
4.灵活性高图像处理大体上可分为图像的改善、和图像重建三大部分,每一部分均包含丰富的内容。由于图像的光学处理从原理上讲只能进行线性运算,这极大地限制了光学图像处理能实现的目标。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。
遥感图像处理处理流程
遥感图像处理一.预处理
1.降噪处理  由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声  周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
(2)除坏线和条带  去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。
2.薄云处理  由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。  3.阴影处理  由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
遥感图像处理二.几何纠正
通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。  1.图像配准  为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。  (1)影像对栅格图像的配准  将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。  (2)影像对矢量图形的配准
将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。  2.几何粗纠正  这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.  3.几何精纠正  为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。  (1)图像对图像的纠正  利用已有准确地理坐标和投影信息的遥感影像,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。  (2)图像对地图(栅格或矢量)  利用已有准确地理坐标和投影信息的扫描地形图或矢量地形图,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
遥感图像处理三.图像增强
为使遥感图像所包含的地物信息可读性更强,感兴趣目标更突出,需要对遥感图像进行增强处理。  1.彩色合成  为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。  彩色图像可以分为真彩色图像和假彩色图像。|  2.直方图变换
统计每幅图像的各亮度的像元数而得到的随机分布图,即为该幅图像的直方图。  一般来说,包含大量像元的图像,像元的亮度随机分布应是正态分布。直方图为非正态分布,说明图像的亮度分布偏亮、偏暗或亮度过于集中,图像的对比度小,需要调整该直方图到正态分布,以改善图像的质量。
3.密度分割  将灰度图像按照像元的灰度值进行分级,再分级赋以不同的颜色,使原有灰度图像变成伪彩色图像,达到图像增强的目的。
4.灰度颠倒  灰度颠倒是将图像的灰度范围先拉伸到显示设备的动态范围(如0~255)到饱和状态,然后再进行颠倒,使正像和负像互换。
遥感图像处理四.图像裁剪
在日常遥感应用中,常常只对遥感影像中的一个特定的范围内的信息感兴趣,这就需要将遥感影像裁减成研究范围的大小。
遥感图像处理五.图像镶嵌和匀色
1.图像镶嵌  也叫图像拼接,是将两幅或多幅数字影像(它们有可能是在不同的摄影条件下获取的)拼在一起,构成一幅整体图像的技术过程。  通常是先对每幅图像进行几何校正,将它们规划到统一的坐标系中,然后对它们进行裁剪,去掉重叠的部分,再将裁剪后的多幅影像装配起来形成一幅大幅面的影像。
2.影像匀色  在实际应用中,我们用来进行图像镶嵌的遥感影像,经常来源于不同传感器、不同时相的遥感数据,在做图象镶嵌时经常会出现色调不一致,这时就需要结合实际情况和整体协调性对参与镶嵌的影像进行匀色。
遥感图像处理六.遥感信息提取
遥感图像中目标地物的特征是地物电磁波的辐射差异在遥感影像上的反映。依据遥感图像上的地物特征,识别地物类型、性质、空间位置、形状、大小等属性的过程即为遥感信息提取。
汤国安,张友顺,刘咏梅,谢元礼,杨昕,刘爱利.《遥感数字图像处理》.北京:科学出版社,2004:9-9【遥感专题系列】影像信息提取之——面向对象特征提取
“同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。
本专题以ENVI中的面向对象的特征提取FX工具为例,对这种技术和处理流程做一个简单的介绍。
本专题包括以下内容:
面向对象分类技术概述
l ENVI FX简介
l ENVI FX操作说明
1、面向对象分类技术概述
面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:对象构建和对象的分类。
影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。
影像对象的分类,目前常用的方法是“监督分类”和“基于规则(知识)分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等对象属性信息。基于规则(知识)分类也是根据影像对象的属性和阈值来设定规则进行分类。
表1为三大类分类方法的一个大概的对比。
影像的最小单元
适用数据源
传统基于光谱的分类方法
地物的光谱信息特征
单个的影像像元
中低分辨率多光谱和高光谱影像
丰富的空间信息利用率几乎为零
基于专家知识决策树
根据光谱特征、空间关系和其他上下文关系归类像元
单个的影像像元
知识获取比较复杂
面向对象的分类方法
几何信息、结构信息以及光谱信息
一个个影像对象
中高分辨率多光谱和全色影像
速度比较慢
传统基于光谱、基于专家知识决策树与基于面向对象的影像分类对比表
2、ENVI FX简介
全名叫“面向对象空间特征提取模块—Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。该模块可以在操作过程中随时预览影像分割效果。该项技术对于高光谱数据有很好的处理效果,对全色数据一样适用。对于高分辨率全色数据,这种基于目标的提取方法能更好的提取各种具有特征类型的地物。一个目标物体是一个关于大小、光谱以及纹理(亮度、颜色等)的感兴趣区域。
可应用于:
从影像中尤其是大幅影像中查找和提取特征。
添加新的矢量层到地理数据库
输出用于分析的分类影像
替代手工数字化过程
易于操作(向导操作流程),随时预览效果和修改参数,保存参数易于下次使用和与同事共享,可以将不同数据源加入ENVI FX中(DEMs、LiDAR datasets、shapefiles、地面实测数据)以提高精度、交互式计算和评估输出的特征要素、提供注记工具可以标识结果中感兴趣的特征要素和对象等特点。
3、ENVI FX操作说明
ENVI FX的操作可分为两个部分:发现对象(Find Object)和特征提取(Extract features),如图1所示。
图1 FX操作流程示意图
下面在ENVI5.0下的FX工具,以0.6米的QB图像为例,介绍向对象信息提取的流程。下面我们。
基于规则的面向对象信息提取
该方法的工具为Toolbox /Feature
Extraction/ Rule Based Feature Extraction Workflow
第一步:准备工作
根据数据源和特征提取类型等情况,可以有选择地对数据做一些预处理工作。
空间分辨率的调整
如果您的数据空间分辨率非常高,覆盖范围非常大,而提取的特征地物面积较大(如云、大片林地等)。可以降低分辨率,提供精度和运算速度。可利用Toolbox/Raster Management/Resize
Data工具实现。
光谱分辨率的调整
如果您处理的是高光谱数据,可以将不用的波段除去。可利用Toolbox/Raster Management/Layer Stacking工具实现。
多源数据组合
当您有其他辅助数据时候,可以将这些数据和待处理数据组合成新的多波段数据文件,这些辅助数据可以是DEM, lidar
影像。当计算对象属性时候,会生成这些辅助数据的属性信息,可以提高信息提取精度。可利用Toolbox/Raster Management/Layer
Stacking工具实现。
如果您的数据包含一些噪声,可以选择ENVI的滤波功能做一些预处理。
这里直接在ENVI中打开qb_colorado.dat图像文件。
第二步:发现对象
启动Rule Based
在Toolbox中,找到Feature Extraction,选择/Feature Extraction/Rule Based Feature Extraction
Workflow,打开工作流的面板,选择待分类的影像qb_colorado.dat,此外还有三个面板可切换:在Input Mask面板可输入掩膜文件,在Ancillary Data面板可输入其他多源数据文件,切换到Custom Bands面板,有两个自定义波段,包括归一化植被指数或者波段比值、HSI颜色空间,这些辅助波段可以提高图像分割的精度,如植被信息的提取等自定义的属性,在Normalized Difference和Color Space属性上打钩,如下图所示,点击Next;
输入数据和属性参数选择
影像分割、合并
FX根据临近像素亮度、纹理、颜色等对影像进行分割,它使用了一种基于边缘的分割算法,这种算法计算很快,并且只需一个输入参数,就能产生多尺度分割结果。通过不同尺度上边界的差异控制,从而产生从细到粗的多尺度分割。
选择高尺度影像分割将会分出很少的图斑,选择一个低尺度影像分割将会分割出更多的图斑,分割效果的好坏一定程度决定了分类效果的精确度,我们可以通过preview预览分割效果,选择一个理想的分割阀值,尽可能好地分割出边缘特征。有两个图像分割算法供选择:
基于边缘检测,需要结合合并算法可以达到最佳效果;
Intensity:
基于亮度,这种算法非常适合于微小梯度变化(如DEM)、电磁场图像等,不需要合并算法即可达到较好的效果。
调整滑块阀值对影像进行分割,这里设定阈值为40。
注:按钮是用来选择分割波段的,默认为Base Image所有波段。
影像分割时,由于阈值过低,一些特征会被错分,一个特征也有可能被分成很多部分。我们可以通过合并来解决这些问题。合并算法也有两个供选择:
Full Lambda
Schedule,合并存在于大块、纹理性较强的区域,如树林、云等,该方法在结合光谱和空间信息的基础上迭代合并邻近的小斑块;
Fast Lambda:
合并具有类似的颜色和边界大小相邻节段。设定一定阈值,预览效果。
这里我们设置的阈值为90,点Next进入下一步。
Texture Kernal
Size:纹理内核的大小,如果数据区域较大而纹理差异较小,可以把这个参数设置大一点。默认是3,最大是19。
注:这一步是可选项,如果不需要可以按照默认的0直接跳过。
图像分割、合并
这时候FX生成一个Region Means
影像自动加载图层列表中,并在窗口中显示,它是分割后的结果,每一块被填充上该块影像的平均光谱值。接着进行下一步操作。
目前,已经完成了发现对象的操作过程,接下来是特征的提取。
第三步:根据规则进行特征提取
在规则分类界面。每一个分类有若干个规则(Rule)组成,每一个规则有若干个属性表达式来描述。规则与规则之间是与的关系,属性表达式之间是并的关系。
同一类地物可以由不同规则来描述,比如水体,水体可以是人工池塘、湖泊、河流,也可以是自然湖泊、河流等,描述规则就不一样,需要多条规则来描述。每条规则又有若干个属性来描述,如下是对水的一个描述:
面积大于500像素
延长线小于0.5
NDVI小于0.25
对道路的描述:
延长线大于0.9
紧密度小于0.3
标准差小于20
这里以提取居住房屋为例来说明规则分类的操作过程。
首先分析影像中容易跟居住房屋错分的地物有:道路、森林、草地以及房屋旁边的水泥地。
点击按钮,新建一个类别,在右侧Class properties下修改好类别的相应属性。
规则分类面板
第一条属性描述,划分植被覆盖和非覆盖区。
在默认的属性Spectral
Mean上单击,激活属性,右边出现属性选择面板,如图所示。选择Spectral,Band下面选择Normalized Difference。在第一步自定义波段中选择的波段是红色和近红外波段,所以在此计算的是NDVI。把Show Attribute Image勾上,可以看到计算的属性图像。
通过拖动滑条或者手动输入确定阈值。在阈值范围内的在预览窗口里显示为红色,在Advanced面板,有三个类别归属的算法:算法有二进制、线性和二次多项式。选择二进制方法时,权重为0或者1,即完全不匹配和完全匹配两个选项;当选择线性和二次多项式时,可通过Tolerance设置匹配程度,值越大,其他分割块归属这一类的可能性就越大。这里选择类别归属算法为Liner,分类阈值Tolerance为默认的5,如下图
对象属性面板
归属类别算法和阈值设置
属性。在Rule上右键选择Add Attibute按钮,新建一个规则,在右侧Type中选择Spatial,在Name中选择Rectangular fit。设置值的范围是0.5~1,其他参数为默认值。
注:预览窗口默认是该属性的结果,点击All
Classes,可预览几个属性共同作用的结果。
同样的方法设置
Type:Spatial;Name:Area——Area&45
Type:Spatial;Name:Elongation——Elongation&3
Type:spectral;Name:Spectral Mean,Band:GREEN——Spectral Mean
(GREEN)&650。
Classes,最终的rule规则和预览图如下图所示。
注:单击按钮,打开“房屋.rul”,可以导入预先设置的规则。
房屋提取规则与结果
特征提取结果输出,可以选择以下结果输出:矢量结果及属性、分类图像及分割后的图像、还有高级输出包括属性图像和置信度图像、辅助数据包括规则图像及统计输出,如下图所示。
这里我们选择矢量文件及属性数据一块输出,规则图像及统计结果输出。点击Finish按钮完成输出。可以查看房屋信息提取的结果和矢量属性表
图9房屋信息提取的矢量结果和属性表
类似的思路可以提取道路、林地、草地等分类,这里就不一一例举。
基于样本的面向对象的分类
该方法的工具为Toolbox /Feature
Extraction/Example Based Feature Extraction
Workflow。
在Toolbox中找打该工具,双击打开流程化的面板,前面两步和第一种方法的前两步完全一致,选择数据和发现对象,在此不一一赘述。我们直接看特征提取这部分:基于样本的图像分类。
第三步:基于样本的图像分类
经过图像分割和合并之后,进入到监督分类的界面,如下图所示:
监督分类界面
对默认的一个类别,在右侧的Class
Properties中,修改显示颜色、名称等信息。
修改类别属性信息
在分割图上选择一些样本,为了方便样本的选择,可以在左侧图层管理中将Region Means图层关闭掉,显示原图,选择一定数量的样本,如果错选样本,可以在这个样本上点击左键删除。
一个类别的样本选择完成之后,新增类别,用同样的方法修改类别属性和选择样本。在选择样本的过程中,可以随时预览结果。可以把样本保存为shp文件以备下次使用。点击按钮可以将真实数据的ShapeFile矢量文件作为训练样本。
这里我们建立5个类别:道路、房屋、草地、林地、水泥地,分别选择一定数量的样本,如下图所示。
设置样本属性
切换到Attributes
Selection选项。默认是所有的属性都被选择,这些选择样本的属性将被用于后面的监督分类。可以根据提取的实际地物特性选择一定的属性。这里按照默认全选。
样本属性选择
选择分类方法
切换到Algorithm选项。FX提供了三种分类方法:K邻近法(K Nearest Neighbor)、支持向量机(Support Vector Machine
,SVM)和主成分分析法(Principal Components Analysis
K邻近分类方法依据待分类数据与训练区元素在N维空间的欧几里得距离来对影像进行分类,N由分类时目标物属性数目来确定。相对传统的最邻近方法,K近邻法产生更小的敏感异常和噪声数据集,从而得到更准确地分类结果,它自己会确定像素最可能属于哪一类。
在K参数里键入一个整数,默认值是1,K参数是分类时要考虑的临近元素的数目,是一个经验值,不同的值生成的分类结果差别也会很大。K参数设置为多少依赖于数据组以及您选择的样本。值大一点能够降低分类噪声,但是可能会产生不正确的分类结果,一般值设到3-7之间就比较好。
支持向量机是一种来源统计学习理论的分类方法。选择这一项,需要定义一系列参数:
Type下拉列表里选项有
Linear,Polynomial,Radial Basis,以及
如果选择Polynomial,设置一个核心多项式(Degree of Kernel Polynomial)的次数用于SVM,最小值是1,最大值是6。
如果选择Polynomial or
Sigmoid,使用向量机规则需要为Kernel指定
,默认值是1。
如果选择是 Polynomial、Radial Basis、Sigmoid,需要设置Gamma in Kernel Function参数。这个值是一个大于零的浮点型数据。默认值是输入图像波段数的倒数。
b)为SVM规则指定the Penalty参数,这个值是一个大于零的浮点型数据。这个参数控制了样本错误与分类刚性延伸之间的平衡,
默认值是100。
Unclassified是允许有未分类这一个类别,将不满足条件的斑块分到该类,默认是允许有未分类的类别。
为分类设置概率域值,如果一个像素计算得到所有的规则概率小于该值,该像素将不被分类,范围是0~100,默认是5。
主成分分析是比较在主成分空间的每个分割对象和样本,将得分最高的归为这一类。
这里我们选择K邻近法,K参数设置为5,点击Next,输出结果。
最终结果的输出方法和基于规则的一样。
直接输出矢量
该方法的工具为Toolbox/Feature
Extraction/Segment Only Feature Extraction
Workflow。
操作方法参考前面的第一和第二步骤,第三步直接选择路径输出分割栅格结果和矢量结果。
从以上的实际操作可以看到,ENVI
FX扩展模块操作具有易于操作(向导操作流程),随时预览效果和修改参数。
基于像元的分类方法,依据主要是利用像元的光谱特征,大多应用在中低分辨率遥感图像。而高分辨率遥感图像的细节信息丰富,图像的局部异质性大,传统的基于像元的分类方法易受高分辨率影像局部异质性大的影响和干扰。而面向对象分类方法可以高分辨率图像丰富的光谱、形状、结构、纹理、相关布局以及图像中地物之间的上下文信息,可以结合专家知识进行分类,可以显著提高分类精度,而且使分类后的图像含有丰富的语义信息,便于解译和理解。对高分辨率影像来说,还是一种非常有效的信息提取方法,具有很好的应用前景。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 遥感影像提取 的文章

 

随机推荐