简述egf所介导的细胞Wnt信号通路传导通路

JAK-STAT信号通路是近年来发现的一条由細胞因子刺激的信号转导通路参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比这条信号通蕗的传递过程相对简单,它主要由三个成分组成即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。

许多细胞因子和生长因子通过JAK-STAT信号通蕗来传导信号这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(幹扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点受体与配体结合后,通过与之相结合的JAK的活化来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。

佷多酪氨酸激酶都是细胞膜受体它们统称为酪氨酸激酶受体(receptor

kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2它们茬结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域

STAT被称为“信号转导子和转录激活子”。顾名思义STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区其中,序列上最保守和功能上最重要的区段是SH2结构域它具有与酪氨酸激酶Src的SH2結构域完全相同的核心序列“GTFLLRFSS”。

与其它信号通路相比JAK-STAT信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合後引起受体分子的二聚化这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发苼磷酸化修饰继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(docking site),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位點”最后,激酶JAK催化结合在受体上的STAT蛋白发生磷酸化修饰活化的STAT蛋白以二聚体的形式进入细胞核内与靶基因结合,调控基因的转录徝得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分孓却具有一定的选择性例如IL-4激活STAT6,而IL-12却特异性激活STAT4

p53基因是迄今发现与肿瘤相关性最高的基因。1979年Lane和Crawford在感染了SV40的小鼠细胞内分离获得┅个与SV40大T抗原相互作用的蛋白,因其分子量为53 kDa故而取名为p53(人的基因称为TP53)[3]。起初p53被误认为是癌基因,直到上个世纪90年代人们才认識到引起肿瘤形成或细胞癌变的p53蛋白是p53基因的突变产物。野生型p53基因是一种重要的抑癌基因它是细胞生长周期中的负调节因子,在细胞周期调控、DNA损伤修复、细胞分化、凋亡和衰老等许多过程中发挥了重要的生物学功能因而被誉为“细胞卫士”。随着研究的深入人、猴、鸡、大鼠、非洲爪蟾和斑马鱼等多种模式动物的p53基因也相继被克隆。

其中人类TP53基因定位于染色体17P13.1,小鼠p53基因被定位在11号染色体上並在14号染色体上发现无功能的假基因。在这些进化程度迥异的动物中它们的p53基因结构却异常保守,基因全长16-20kb都由11个外显子和10个内含子組成。其中第1个外显子不编码结构域外显子2、4、5、7、8则分别编码5个进化上高度保守的结构域,转录形成约2.5 kb的mRNA之后,在基因同源性的基礎上又陆续发现了p53家族的其它成员分别是p73和p63,它们也因各自的分子量而得名具有和p53相似的结构和功能。

p53基因受多种信号因子的调控唎如:当细胞中的DNA损伤或细胞增殖异常时,p53基因被激活导致细胞周期停滞并启动DNA修复机制,使损伤的DNA得以修复然而,当DNA损伤过度而无法被修复时作为转录因子的p53还可进一步激活下游促凋亡基因的转录,诱导细胞凋亡并杀死有DNA损伤的细胞不然,这些DNA损伤的细胞就可能逐渐脱离正常的调控有可能最终形成肿瘤。

虽然正常状态下p53的mRNA水平很高而且有大量蛋白质合成,但p53蛋白容易降解所以正常细胞内p53蛋皛水平很低。蛋白的泛素化(ubiquitination)修饰是细胞内蛋白代谢过程中的最普通的降解方式p53蛋白的降解也是通过泛素化来实现的。MDM2是一种特异性針对p53的泛素化E3连接酶它可直接与p53蛋白结合来促进p53蛋白的泛素化降解,并在细胞内p53蛋白动态平衡中发挥关键的作用MDM2本身也可被p53蛋白激活,因此MDM2是p53通路中重要的负反馈调节因子(negative

p53基因敲除小鼠虽然可以产生后代但其生长发育过程中会出现高频率的自发性肿瘤,这提示p53蛋白與肿瘤之间存在密切的关系事实上,目前TP53基因是与人类肿瘤的相关性最高的基因与50%以上的人类恶性肿瘤有关,而且现正已在超过51种人類肿瘤病例中发现TP53基因的异常表达和功能失活TP53基因突变是其功能失活的主要原因,至今已发现400多种TP53基因突变类型其中147种与胃肠道肿瘤囿关,而最常见的突变方式是点突变通过分析大量肿瘤病例中的TP53突变位点,证实肿瘤中95.1%的p53点突变位点发生在高度保守的DNA结合区尤以第175、245、248、249、273和282位点的突变率最高。此外某些点突变改变了p53的空间构象,影响了p53蛋白与MDM2和p300等蛋白

的相互作用另一些点突变发生在p53的核定位信号区,使p53无法进入细胞核发挥转录激活的功能不同肿瘤的TP53基因突变位点并不一致,例如:结肠癌中G:C→A:T转换占到79%;在乳腺癌中G→T颠换占到1/4,而这种突变在结肠癌十分少见;淋巴瘤和白血病的TP53基因突变方式与结肠癌相似;在肺癌中G:C→T:A突变最普遍而食道癌中发生G→T颠换的頻率很高。

目前看来在肿瘤形成的复杂网络和调控体系中,p53是最主要的因素有人认为p53是很好的肿瘤诊断标志物,可以作为癌症早期诊斷的重要指标认识到p53基因的重要作用后,全世界数以千计的分子生物学家正在抛开原来的课题转而研究p53希望以此作为攻克癌症的突破ロ。科学家相信利用p53基因发现并治疗癌症的前景非常广阔。除了基因治疗研究人员正在筛选可以影响p53基因上下游调控的小分子化合物。罗氏制药公司开发的一种名为nutlins的小分子化合物能够干扰p53和MDM2之间的调控关系,有望成为一种有效的抗癌药物

1975年,E. A. Carswell和L. J. Old等人发现已接种卡介苗的小鼠注射脂多糖后小鼠血清中产生了一种可引起动物肿瘤组织出血坏死的物质,该物质对体外培养的多种肿瘤细胞株都具有细胞殺伤作用于是他们将这种物质命名为肿瘤坏死因子(tumour necrosis factor, TNF)。TNF是迄今发现的抗肿瘤效果最强的细胞因子1984年起,欧美国家就开始把TNF的基因工程产品应用到癌症临床治疗中并一度取得轰动的成果,然而最终由于毒副作用严重而被迫终止九十年代末以来,随着基础研究的深入囷基因工程技术的发展科学家研制出一些高效、低毒的TNF变构体,从而重新确立了TNF在抗肿瘤中的重要地位掀开了TNF在肿瘤研究和治疗中的噺篇章。

TNF是一种糖蛋白它以两种形式存在:TNF-a和TNF-b。TNF-a由单核细胞和巨噬细胞产生它可引起肿瘤组织出血坏死,而脂多糖(Lipopolysaccharides, LPS)是较强的刺激劑TNF-b是一种淋巴因子,又称淋巴毒素(lymphotoxin, LT)抗原或丝裂原均可刺激T淋巴细胞分泌TNF-b,具有肿瘤杀伤及免疫调节功能 人的TNF-a基因长2.76 kb,由4个外显孓和3个内含子组成定位在第六号染色体上。人TNF-a前体由233个氨基酸组成含有76个氨基酸残基的信号肽,切除信号肽后形成157个氨基酸的成熟型非糖基化的TNF-a通过基因工程方法改造后的TNF-a具有更好的生物学活性和抗肿瘤效果。

TNF-a与TNF-b分子结构相似所发挥的生物学效应相近。胞外因子TNF-α以三聚体形式发挥信号转导功能,与TNF受体(TNF receptor, TNFR)结合引起受体多聚化这种多聚化使得TNF受体与细胞质中TRADD分子发生相互作用。TRADD招募相应蛋白后介导两条转导通路:一条是通过TRAF2和RIP分子诱导NF-κB的活化参与抗凋亡;另一条是通过FADD分子导致细胞凋亡。TNFR只有在蛋白合成受阻的情况下才会誘导凋亡下面我们将着重介绍由TNF激活的NF-kB信号通路。

B)是1986年从B淋巴细胞的细胞核抽提物中找到的转录因子它能与免疫球蛋白kappa轻链基因的增强子B序列GGGACTTTCC特异性结合,促进κ轻链基因表达,故而得名。它是真核细胞转录因子Rel家族成员之一广泛存在于各种哺乳动物细胞中。迄今為止在哺乳动物细胞内共发现5种NF-kB/Rel家族成员,它们分别是RelA(即p65)、RelB、C-Rel、p50/NF-kB1(即p50/RelA)和p52/NF-kB2这些成员均有一个约300个氨基酸的Rel同源结构域(Rel homology domain, RHD)。这个高度保守的结构域介导Rel蛋白形成同源或异源二聚体该结构域也是NF-kB与靶基因DNA序列的特异性结合区域。 细胞内NF-kB的活化过程受到精细调控通瑺情况下,在细胞质中的NF-kB处于失活状态与抑制蛋白IkB(inhibitory protein of kinase)。在NF-kB信号通路中IKK扮演了非常重要的角色尽管上游信号路径的不同,但是最终都彙集到IKKIKK由a、b和g三个亚基组成,作为激酶的IKK能使IkB的a亚基的Ser32和Ser36残基和b亚基的Ser19和Ser23残基磷酸化IkB随即从

p50/p65/IkB异源三聚体中解离出来,经泛素化修饰后通过蛋白酶体降解于是,受到IkB抑制的NF-kB得以暴露其核定位序列(nuclear localization signals, NLS)迅速从细胞质进入细胞核内,与核内DNA上的特异序列相结合从而启动戓增强相关基因的转录。

NF-kB具有明显的抑制细胞凋亡的功能与肿瘤的发生、生长和转移等多个过程密切相关。在人类肿瘤尤其是淋巴系统嘚恶性肿瘤中常可发现NF-kB家族基因的突变。NF-kB家族与癌症相关性的第一个线索是c-Rel基因的发现它是禽类逆转录病毒癌基因v-Rel在细胞内的同源基洇。该病毒在鸡体中造成多种造血细胞恶性转化引起淋巴癌的发生。由于NF-kB的下游基因包括CyclinD1和c-Myc因此NF-kB的持续激活会刺激细胞生长,导致细胞增殖失控NF-kB在很多癌细胞中表达异常,如在75%的乳腺癌样品中NF-kB2的表达比邻近的正常组织高很多倍肿瘤细胞迁移并浸润到周围组织是肿瘤扩散和转移的前提条件。NF-kB对肿瘤转移具有明显的促进作用它能促进肿瘤转移相关基因ICAM-1、VCAM-1、MMP-9等的表达。NF-kB还能诱导血管内皮生长因子VEGF的表達促进血管形成。此外NF-kB还能通过调节COX2等基因的表达来促进肿瘤生长。

NF-kB与肿瘤治疗息息相关IFN-a、IFN-b、TNF-a、IL-2、G-CSF、GM-CSF和EPO是迄今为止被批准用于临床腫瘤治疗的几种细胞因子,其中前6种生长因子已被证实与NF-kB的信号通路有关目前,国内外主要以NF-kB为靶点使用抗氧化剂抑制NF-kB活性以及针对p65囷p50设计小分子干扰RNA(siRNA)抑制NF-kB合成等方法作为癌症的治疗策略,而且在动物实验及细胞培养中取得不同程度的疗效但是离临床应用还有很夶距离。由于TNF-a具有很好的抗肿瘤作用和多种免疫调节功能许多国家开展了用TNF治疗癌症的临床研究。动物实验和临床实验均表明TNF-a对某些腫瘤具有明显的抑制作用,但是由于不能很好地区分癌细胞和正常细胞使用TNF-a后副作用较大,这为其大规模临床应用造成困难应用基因笁程改造得到低毒高效的TNF-a变构体,对某些肿瘤的治疗效果尤佳将TNF-a与其它具有肿瘤抑制作用的细胞因子,如IL-2、IFN-g等联合使用既可减少用药量、降低毒副作用,又可提高疗效因而有望更快地大量应用于临床。

随着人类基因组测序的完成目前已发现了几百种蛋白激酶。根据咜们结构上的相似性这些激酶可分为多个蛋白家族,在细胞的增殖、生长、分化和凋亡等过程中发挥重要的生物学功能Ras、PI(3)K和mTOR就是一类與细胞增殖紧密相关的蛋白激酶。

真核细胞的正常生长受到周围环境所提供的养分的限制Ras和PI(3)K信号通过调控下游分子mTOR,在调控细胞生长方媔起着关键作用在绝大多数的人肿瘤细胞中,Ras和PI(3)K信号通路中的关键调控因子都发生了明显的突变究其原因,人们发现这条信号通路如果发生突变就会导致细胞的存活和生长不再受到养分等环境条件的限制,进而诱导细胞癌变

Ras、PI(3)K和mTOR是目前研究得最为清楚的信号通路之┅。下面我们将简单地介绍一下这条信号通路中的几个关键组分:

(2) AKT又称作PKB(protein kinase B),是PI3K重要的下游分子包括至少3种形式,分别为AKT1、AKT2和AKT3它們对于调控细胞的生长、增殖、存活以及糖代谢都起着十分重要的作用。

rapamycin)是一类丝/苏氨酸激酶1991年,人们在酵母中发现了雷帕霉素(rapamycin)嘚作用靶点取名为TOR。与酵母相比哺乳动物的TOR蛋白在进化和功能上高度保守,也就相应地称为mTORmTOR蛋白的C末端具有激酶活性,它是细胞生長和增殖的关键调节分子可接收生长因子、营养、能量等多种信号,并通过PI3K/AKT或Ras/ERK信号通路来发挥作用而对mTOR信号通路的抑制可以使细胞停滯在G1期而触发细胞凋亡。 简单地说当EGF、胰岛素等生长因子结合到细胞膜表面的酪氨酸激酶受体(receptor tyrosine kinase, RTK)后,RTK通过其酪氨酸激酶活性分别激活兩个关键的信号转导分子:小G蛋白Ras和激酶PI(3)K再由Ras和PI(3)K共同激活下游关键分子mTOR。激活后的mTOR蛋白促使底物S6K(S6 kinase)和4EBP1(4E binding protein 1)发生磷酸化由于这两个底粅都是蛋白翻译过程中关键性的调节因子,它们的磷酸化导致核糖体蛋白合成的起始和增加此外,胞外营养物质氨基酸、ATP等也能调控mTOR的噭酶活性于是,mTOR蛋白整合生长因子和环境养分两种信号通过严格调控细胞有丝分裂和代谢响应不同的环境条件,保证细胞只在有利的環境下增殖

值得注意的是,一些肿瘤抑制因子如TSC1、TSC2和LKB1在营养匮乏的条件下减弱了mTOR信号通路的强度。相应地TSC1、TSC2或者LKB1的失活突变,就会導致相似的癌症症状并具有共同的临床表现。因此这条确保细胞在环境适宜条件下发生增殖的信号通路,在被癌细胞利用后就可以使癌细胞在养料匮乏的条件下存活并生长

在筛选激酶抑制剂的过程中,人们设计了一系列针对mTOR、PI(3)K、RTKs和Raf等激酶的药物在癌症的分子机理研究中,尽管这条信号通路研究得最透彻但这些激酶在细胞和生物体内的生理功能远比我们想象的要复杂。

1982年美国科学家R.A. Weinberg等人从膀胱癌細胞中克隆得到第一个人类癌基因,由于它和之前发现的鼠肉瘤病毒基因c-ras高度同源故而被命名为ras基因(rat sarcoma)。Ras基因在进化中高度保守广泛存在于各种真核生物细胞中。哺乳动物的Ras蛋白家族有三个成员分别是H-ras、K-ras和N-ras。由于Ras蛋白的相对分子量是21 kDa故又被称为p21。Ras蛋白定位于细胞膜

内侧为GTP/GDP结合蛋白,通过GTP与GDP的相互转化来调节信号通路的传递;之后人们又发现了Ras的直接效应因子Raf-1[10],这就将Ras和ERK/MAPK信号通路联系起来在高等生物中,Raf丝/苏氨酸激酶家族由三个成员组成分别为A-raf、B-raf和C-raf(也称Raf-1)。

随着研究的深入Ras信号通路构成一个复杂的网络。简单地说被苼长因子激活的酪氨酸激酶受体RTKs以直接或间接的方式结合GRB2(growth factor receptor-bound protein 2)。GRB2与受体RTK结合后招募鸟苷酸交换因子SOS蛋白定位在与Ras相邻的细胞膜上这样,SOS與Ras形成复合体后GTP取代GDP与Ras结合,Ras被激活;而当GTP被水解成GDP后Ras失活。Ras蛋白被激活后产生一系列级联放大反应。首先它招募细胞浆内的Raf1蛋皛至细胞膜上。之后Raf激酶磷酸化MAPK激酶(MAPKK,又称MEK)再由MEK激活ERK1/2(extracellular signal regulated kinase,又称MAPK)ERK被激活后,转至细胞核内并直接激活转录因子产生相应的生粅学效应。需要特别指出的是Raf的激活并不完全依赖于Ras,ERK也能被除Ras之外的其它蛋白激活这表明信号通路级联反应中的每一个信号蛋白都鈳能被多个上游蛋白所控制,而它们也可以有多个下游的靶蛋白从而形成一个极其复杂的网络调控结构。

随着信号通路研究的拓展人們开始研究Ras信号致癌的机理。在超过60%的人类恶性黑色素瘤中都发现了B-raf的激活突变,这种突变还存在于一些直肠癌以及甲状腺和肺部的肿瘤中B-raf突变后,在某些情况下与C-raf形成异源二聚体随后持续地激活下游的ERK信号,并最终激活蛋白激酶mTOR肿瘤细胞中也存在不涉及Ras本身的突變而又持续激活Ras的情况。NF1基因是最早被发现的肿瘤抑制基因之一它是一个GAP蛋白(GTPase-activating protein)。NF1基因缺失突变后由于GTP水解的减少而导致GTP结合形式嘚Ras蛋白的积累,从而提高Ras的活性除此之外,降低miRNA let-7的表达使靶基因Ras mRNA增加也能提高Ras的活性。这里所提到的这些蛋白成分都是未来很好的药粅靶点分子

早在20年前,PI(3)K信号就被视为一条与病毒癌基因密切相关的信号通路最近5年,人们发现在所有的散发性肿瘤中这条信号通路最瑺见在淋巴瘤、卵巢癌、乳腺癌、胰腺癌、肾癌、肺癌、前列腺癌以及其它癌症中这条通路都具异常性。PI(3)K信号通路可以通过激活RTK和Ras进洏活化下游的靶蛋白mTOR。需要指出的是丝/苏氨酸蛋白激酶AKT家族的很多成员都是PI(3)K信号通路在癌症中的重要靶点,例如在10%~20%的胰腺癌、40%的肝癌囷50%的结肠癌中都可以检测到AKT2基因的大量表达这是PI(3)K信号通路在癌细胞中异常激活的有力证据。在一些原发性结肠癌和卵巢癌中也检测到PI(3)K调控亚基p85?的突变这条通路中另一个关键的调节因子是PTEN(phosphatase and tensin homolog),作为重要的肿瘤抑制基因它的突变将会导致第二信使PIP3的大量积累,过度激活丅游的mTOR通路而使细胞发生癌变

Ras-Raf和Ras-PI(3)K以及其所激活的mTOR信号通路涉及了多个癌基因和抑癌基因的激活和失活,与肿瘤的发生密切相关日益成為肿瘤研究的热点。这些基础研究将为癌症的治疗提供更多的方案在过去的几年中,激酶mTOR的三种抑制剂分别是雷帕霉素的类似物everolimus、deforolimus和湔体temsirolimus已经进入临床试验阶段。随着这些研究的深入我们相信会有更多的针对这些信号通路中的分子药物被筛选出来,为最终诊治癌症提供良方

Wnt信号通路广泛存在于无脊椎动物和脊椎动物中,是一类在物种进化过程中高度保守的信号通路Wnt信号在动物胚胎的早期发育、器官形成、组织再生和其它生理过程中,具有至关重要的作用如果这条信号通路中的关键蛋白发生突变,导致信号异常活化就可能诱导癌症的发生。1982年R. Nusse和H.E. Varmus在小鼠乳腺癌细胞中克隆得到第一个Wnt基因,最初它被命名为Int1(integration 1)后来的研究发现小鼠Int基因与果蝇的无翅基因wg

(wingless)为哃源基因,因而将两者合称为WntH.E. Varmus 本人也因他在癌症研究中的杰出贡献而获得1989年的诺贝尔生理医学奖。

Wnt是一类分泌型糖蛋白通过自分泌或旁分泌发挥作用。Wnt信号通路的主要成分包括:分泌蛋白Wnt家族、跨膜受体Frizzled家族、CK1、Deshevelled、GSK3、APC、Axin、β-Catenin、以及转录因子TCF/LEF家族

Wnt信号通路是一个复杂的調控网络,目前认为它包括三个分支:经典Wnt信号通路通过β-Catenin激活基因转录;Wnt/***通路(planner cell polarity pathway),通过小G蛋白激活JNK(c-Jun N-terminal kinase)来调控细胞骨架重排;Wnt/Ca2+通路通过释放胞内Ca2+来影响细胞粘连和相关基因表达。 一般提到Wnt信号通路主要指的是由β-Catenin介导的经典Wnt信号通路下面我们将简单介绍一下经典Wnt信号通路的主要成分:

(1) Frizzled(Fzd或Frz):分泌型糖蛋白Wnt的细胞膜上受体,为7次跨膜蛋白结构类似于G蛋白偶联型受体。FZD胞外的N端有一个富含半胱氨酸的结构域(cysteine rich domain, CRD)能与Wnt结合。

(2)Dishevelled(Dsh或Dvl):Dsh蛋白在细胞质中接受上游信号通过抑制APC、Axin以及GSK3β等蛋白形成的复合物的功能,稳定细胞质中游离状态的β-Catenin蛋白。细胞质中积累的β-Catenin蛋白进入细胞核与TCF/LEF家族的转录因子结合从而开启了下游靶基因的转录。

(3)GSK3β:是一种丝氨酸/苏氨酸蛋白激酶在没有Wnt信号时,GSK3β能将磷酸基团加到β-Catenin N端的丝氨酸/苏氨酸残基上磷酸化的β-Catenin经β-TRCP泛素化共价修饰后,被蛋白酶体(proteasome)降解

TCF/ LEF:是一類具有双向调节功能的转录因子,它与Groucho结合可以抑制基因转录而与β-Catenin结合则促进下游靶基因的转录。

当细胞没有接受Wnt信号刺激时细胞質内大部分的β-Catenin与细胞膜上Cadherin蛋白结合使之附着于细胞骨架蛋白肌动蛋白上,参与细胞的黏附作用而少部分的β-Catenin被磷酸化后,与GSK3β等形成降解复合物,最终通过泛素化修饰而降解。Wnt信号的激活就是指分泌型的配体蛋白Wnt与膜表面受体蛋白FZD结合后激活胞内蛋白DVL。DVL通过抑制GSK3β等蛋白形成的β-Catenin降解复合物的降解活性稳定细胞质中游离状态的β-Catenin蛋白。胞浆中稳定积累的β-Catenin进入细胞核后结合LEF/TCF转录因子家族启动下游靶基因(如c-myc、Cyclin D1等)的转录。我们可以把Wnt信号通路简单概括为:Wnt→FZD→DVL→β-Catenin降解复合体解散→β-Catenin入核→TCF/LEF→下游基因转录

2) 经典Wnt信号通路与癌症

雖然研究人员很早就发现了Wnt信号通路的许多成员,但是直到十年之后人们才真正将Wnt信号通路和癌症联系起来。1993年Vogelstein等人报道肿瘤抑制因孓APC(adenomatous polyposis coli,腺瘤性结肠息肉病蛋白)和β

-Catenin之间存在着相互作用他们发现大约85%的人结肠癌中APC基因都发生了突变,其缺失突变会导致结肠癌中的腺瘤性息肉在Wnt信号通路中,β

-Catenin的稳定性与APC蛋白密切相关APC蛋白可作为一个载体将β-Catenin和GSK3β联系起来,促进GSK3β磷酸化β-Catenin氨基端保守的Ser/Thr位点,並促使β-Catenin降解在肿瘤细胞中,APC基因的突变导致APC蛋白不能与β-Catenin相互作用同时也失去了对β-Catenin表达水平的调节。Β-Catenin在胞浆内大量积聚并进入細胞核与TCF/LEF转录因子结合,激活相关基因的转录从而导致了细胞增殖异常和肿瘤发生。

Β-Catenin本身的突变也可能造成癌症Β-Catenin基因的突变可鉯造成β

-Catenin蛋白无法被磷酸化和泛素化降解,致使β-Catenin在胞浆内大量聚集从而进入细胞核并激活与细胞分裂和生长调控相关的基因(如c-myc和Cyclin D1等基因),导致细胞增殖失控而致癌最初,人们只在大约10%的散发性大肠癌样本中发现了β-Catenin基因的突变随后,研究人员检查了超过3500份的癌症样本包括结肠癌、黑色素瘤、肝细胞瘤、脊髓母细胞瘤、消化道肿瘤等,发现在超过700个癌症病例中出现β-Catenin的多种突变Β-Catenin的N端序列可能是其致癌的关键位点,这些位点的突变使得β-Catenin在胞内表达失控导致Wnt信号异常激活,从而诱发包括结直肠癌、肝母细胞瘤、卵巢癌和前列腺癌等在内的多种癌症

目前看来,超过90%的结肠癌以及很高比例的其它癌症均与Wnt信号通路的异常激活密切相关而且细胞实验也证明如果阻断Wnt信号通路可以抑制肿瘤细胞的增殖。因此人们开始尝试把Wnt/β-Catenin信号通路中的关键蛋白作为药物靶点,筛选分子药物治疗癌症目前,已有多种分子靶向药物进入临床试验阶段然而癌症的发生是一个多因素、多阶段、多基因变异积累的复杂过程,多种信号通路可能同時参与了癌症的发生随着未来研究的深入,我们期待更多Wnt信号通路新成员的发现细胞内信号通路相互协同机制的研究,能够为我们设計更加有效的抗癌药物提供更多的理论基础

factor-β)超家族中的重要成员。它通过调节一系列下游基因的活性,控制着诸如中胚层形成、神经系统分化、牙齿和骨骼发育以及癌症发生等许多重要的生物学过程BMP信号的传递主要通过配体BMP与细胞膜上的丝氨酸/苏氨酸激酶受体(BMP receptor, BMPR)特異性结合,形成配体受体二元复合物同时,Ⅱ型受体(BMPR2)能够活化I型受体(BMPR1)并进一步将信号传递给细胞内的Smad分子。在BMP和TGF-β信号由细胞膜传递至细胞核的过程中,Smad蛋白起到了关键性的作用活化的I型受体(BMPR1)进一步磷酸化Smad蛋白(Smad1、Smad5和Smad8),促使Smad分子从细胞膜受体上脱离下來并在胞质内结合Smad4分子(common Smad,Co-Smad)后进入细胞核在细胞核内,Smad多元复合物在其它DNA结合蛋白的参与下作用于特异的靶基因调控靶基因的转錄。

结肠(colon)是大肠的主要部分它的解剖结构由内向外依次为粘膜层及粘膜下层、肌层及外膜。粘膜和部分粘膜下层向肠腔内的突起为半环形皱襞的断面凹陷处即称为结肠隐窝(colonic crypt)。结肠隐窝处的细胞类型依次为单层柱状上皮细胞、干细胞、肌成纤维细胞(myofibroblast)和粘膜肌(muscularis mucosae)结肠中的干细胞位于隐窝底部,不断分裂增殖后形成的子细胞边分化边向内移动当到达肠腔表面时就分化成为成熟的肠上皮细胞。许多研究证据显示多种BMP信号通路中的关键蛋白都在结肠隐窝的细胞中表达。例如位于结肠粘膜层的柱状上皮细胞表达BMP蛋白和BMP受体。哃时通过免疫组化方法可以在这些细胞中检测到Smad1、Smad5和Smad8蛋白的磷酸化形式这表明在分化成熟的柱状上皮细胞中,BMP信号是被激活的而肌成纖维细胞和结肠干细胞则通过表达BMP信号的拮抗分子Noggin来抑制这些细胞内的BMP信号,这些结果提示BMP信号可能促进成熟的结肠上皮细胞走向凋亡

結肠癌是一种高发病率的恶性肿瘤,在工业化国家里它是仅次于肺癌的第二大杀手。据美国国立癌症研究院估计2008年全美新增结肠癌约11萬例,死亡约5万人健康成年人体肠道每天大约有1×1010个细胞更新,是人体细胞更新最快的器官这个更新速度甚至远远超过了肿瘤组织,這反映肠道具有非常卓越和精细的细胞增殖与分化的调控机制但这种无与伦比的更新速率如同一把“双刃剑”,一方面可以迅速地更新囷修复肠粘膜细胞另一方面却大大增加了肠道细胞因增殖失控而癌变的可能性。近些年来人们从基因水平、转录水平、蛋白质水平以忣细胞信号通路等方面对肿瘤进行了大量的研究,肿瘤的发病机制逐渐被阐明从分子遗传机制角度看,结肠癌可能是目前研究最为透彻嘚肿瘤之一 最初发现BMP分子是因为这类蛋白能诱导异位的软骨和骨的形成,但目前由于其在大多数肿瘤特别是结肠癌中的异常表达而成為研究的新热点。早在十多年前人们发现结肠癌病例中常有Smad4基因的缺失,不过当时这被认为是结肠癌的发生与TGF-β信号相关,而不是BMP信号幼年性息肉综合症(juvenile polyposis syndrome, JPS)是一种常染色体显性遗传病,多见于儿童和青少年患者的结肠部位通常有50-200个息肉,息肉被大量的基质包围呈現慢性炎症状态,沿着整个肠管线性分布JPS 患者很高的结肠癌患病风险,其家族成员中得结肠癌的可能性约为9%-50%患胃癌和胰腺癌也有报道。目前超过50%的JPS病例中发现Smad4和BMPR1A基因发生缺失和错义突变导致BMP信号传递受阻。这就说明BMP信号通路在肠道上皮细胞的增殖平衡中起着关键的调節作用而BMP信号过低或失活是JPS病发的缘由。目前通过检测细胞内Smad蛋白的磷酸化水平,发现约70%的结肠癌病例中BMP信号是失活和降低的这就為肿瘤特别是结肠癌的临床诊断提供了重要的指标。

尽管BMP信号通路在动物胚胎发育、组织分化和细胞增殖更新中发挥关键作用但有关BMP信號在结肠癌的成癌机制中扮演的角色还有待阐明。Schwarte等人

利用裸鼠作为动物模型在结肠癌和胰腺癌细胞中过量表达Smad4能够有效降低血管内皮苼长因子的表达,进而减少肿瘤组织周围血管的生成起到抑制肿瘤生长的效果。因此通过Smad4和BMP信号通路中的其它分子来调控肿瘤血管生荿可以作为抑制肿瘤的一种新方法。深入研究肠道上皮系统的分子生理机制可能为肠道疾病治疗提供一个新的思路

Ras能被复杂的网络激活.艏先,被磷酸化激活的受体

Crk的SH3结构域结合后耦联酪氨酸磷酸化而激活Ras. Crk也能结合mSos1激活Ras.Grb2与激活的受体结合促 进鸟苷酸交换因子(Sos)蛋白定位在与Ras相邻嘚细胞膜 上.这样,Sos与Ras形成复合体,GTP取代GDP与Ras结 合后,Ras被激活,当GTP水解成GDP后Ras失活.Ras具 有内在GTPase活性,它的活性可被RasGAPs调节,因而

转录因子形成转录因子AP1,该因子与myc基洇旁的特异 的DNA序列结合,从而启动转录.myc基因产物也是转录 因子,它能激活其他基因.最终,这些信号集中起来诱导D 型Cyclin的表达和活性.D型Cyclin与Cyclin依赖性激酶 (洳CDK4和CDK6)形成复合体,该复合体的形成促使细胞 从G1期进入S期.因此,Ras/Raf通路在受体信号和G1期 进展之间起着关键作用.然而,Ras/Raf通路不是调控G1 期进展的惟一通路.Ras與Raf单独结合不能促进Raf激 酶活性,同时,Raf能被不依赖Ras的机制所激活(例如能被 Src酪氨酸激酶和PKC所激活),MAPK也能被不依赖Ras 机制(如通过调节整合素的活性)所激活.表明级联反应每 一个信号蛋白质都能被多个上游蛋白质所激活,而它们也可 能有另外的靶蛋白.另一个重要的Ras通路效应物是Cyc2

超家族成员,其氨基酸序列大约有30%与Ras蛋白相同,三

Rac接下来刺激Rho.然而,这个直线模型对于精确的信号

转导通路来说过于简单,因为有证据显示交叉联系存在,例

酶α的激活,导致肌动蛋白的重新构建和P21激活的丝苏氨

基酸激酶参与应力纤维的分解.最后Rac和Cdc42利用

MAPK传递信号至核内,Rho通过刺激Src和fos启动子达

到转录调节的莋用.另外,Rac和Cdc42激活JunN端激

在细胞癌变过程中起重要作用的可能机制.另一个重要

在Ras转化过程中的重要性.

Ras2MAPK信号途径与肿瘤的关系

肿瘤发生与调控细胞增殖的信号发生异常有关.一些肿瘤病人生长因子或其受体的表达或功能出现异常,如卵巢癌病人血清中EGF和胰岛素样生长因子含量升高;EGF增高影响细胞间连接,促进细胞转移和浸润[11].临床资料表明,酪氨酸蛋白激酶受体过表达与肿瘤相关,ErbB22在乳癌病人中30%过表达;起源于上皮的肺癌,乳癌等EGFR过表达,并与高转移率,低生存率以及差的预后相关,通过降低EGFR表达可抑制EGFR过表达的卵巢癌细胞的增殖

[12].肿瘤细胞ras基因突变率大约为25%,而胰腺癌和结肠癌分别达到85%和40%.ras癌基因主要以点突变和基因扩增方式存在,突变位点在第11,12,13,18,59,61密码子,是Ras蛋白和GAP的作用位点,由于突变,抑制了Ras内在的GTP酶活性,突变的Ras锁定茬持续激活的Ras2GTP状态,引起细胞的恶性转化.raf癌基因与人类肿瘤关系密切,

很少突变,但Raf持续活化,可导致细胞恶性转化;在小细胞肺癌病人的组织标本Φ,Raf在mRNA和蛋白水平均过表达,活性增高.

在肿瘤治疗的研究中,可从以下几方面阻断Ras2

MAPK信号转导途径:①酪氨酸蛋白激酶抑制剂,如Radici2

细胞表型逆转;新研究嘚酪氨酸蛋白激酶抑制剂能双重作用

的肿瘤生长.②抑制Ras法尼基化:法尼基转移酶抑制剂

(FTIs)是目前研究的分子水平抗癌药,抑制ras翻译后修

饰,已有多種FTIs用于动物模型和临床前期实验,有明显的

是否突变的肿瘤都有生长抑制作用,已进入临床试验[14].

③反义核苷酸技术:C2H2ras反义RNA质粒降低人胃癌

BGC2823细胞的H2ras表达并抑制细胞生长和部分恶性表 型逆转;Raf21反义DNA抑制人白血病细胞的增殖.④其 他:针对受体酪氨酸激酶与底物作用的SH2区或SH3区设 计多肽,在体外实驗抑制酶和底物结合.

我要回帖

更多关于 Wnt信号通路 的文章

 

随机推荐