一千八百年前,三国时期的地图建筑上,出现了「いじあさ」字样。并且,这几个字符,至少存在了900年以上。

服务器提了一个问题,我们正在紧张地撰写答案...&& 查看话题
【转贴】世界个文明古国古代数学大致介绍【已搜无重复】
中国:筹算、观天和算法
& & 我国是世界上最早的文明国家之一。很早以前,我们的祖先在渔猎农事活动中就接触到了计算和测量,并在这方面积累了大量的知识。
& & 万里长城和大运河是我国古代文明的伟大成就。战国时期战争连绵,燕、赵、秦三国为了抵御来自北方的侵扰,建筑了长城;秦始皇统一全国,把它们连接起来。后来,汉朝和明朝都大规模修筑过长城。长城由西至东,在险峻起伏的山岭上绵延数千公里,是世界上仅有的巨大土石建筑。沟通南北的大运河,长达一千七百多公里,朴实壮观,是非常杰出的水利工程。我国人民在长城和运河的建造过程中积累了大量的几何测量、数字计算和土木工程方面的知识。
& & 我国古代的计算不是用记数文字直接进行,而是用算筹,很有特色。在开始的时候,人们是用一些小树枝来计数,一根小树枝代表一头牲畜、一堆谷物或者一件农具。后来,逐渐形成了一套计算方法,小树枝也慢慢变成了竹制、铁制、牙制的小棍,外形规格齐整,这就是算筹。
& & 筹算可以进行整数和分数的加、减、乘、除、开方等各种运算。直到元、明以前,筹算一直是我国的主要计算方法。
& & 筹算的记数法既是十进,又按位值分别表示不同单位,和现代记数法相似。著名的数学著作《九章算术》,大约编于公元四、五十年间的东汉初期。这部书是采用问题集的形式编的,共有二百四十六个问题,分成方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
& & 方田章讲的是各种分数计算和方田、梯形田、斜方形田、圆田、半圆形田、弧田、环形田等的面积计算;粟米章讲的是粮食交易的简单比例计算;衰分章讲的是一些按比例分配的问题;少广章讲的是由已知面积和体积,反求边的长短和面的宽广的问题,其中总结出了开平方和开立方的方法;商功章讲的是计算各种体积的方法,主要解决筑城、建堤、挖沟、修渠等实际工程问题;均输章讲的是粮食运输均匀负担的计算方法;盈不足章讲的是盈亏计算法和它的应用;方程章讲的是正负数算法,还有各种三元一次和四元一次联立方程的解法。勾股章叙述了勾方、股方的和等于弦方的勾股定理,以及相似直角三角形解法的问题。
& & 《九章算术》的内容丰富多彩,包括了许多算术、几何、代数和三角的知识,是一部非常杰出的数学专著,它对我国数学的发展影响深远。
& & 《九章算术》不只在中国数学史上占有十分重要的地位,而且影响远及国外。朝鲜和日本都曾经用它作为教科书。欧洲在中世纪的一些算法,比如分数和比例就很可能是从中国传入印度、再经阿拉伯传入欧洲的。在阿拉伯和欧洲的早期数学著作中,把“盈不足”称为“中国算法”就是一个证明。现在,《九章算术》已作为世界科学名著,被译成许多种文字出版。
& & 《周牌算经》是我国另一部有名的天文学、数学著作,大约时在公元前一百年前后的西汉年间成书。书里明确给出了勾股定理的一般形式,即勾²+股²=弦²。
& & 书中介绍了在两地利用标杆测出日影、再进一步利用勾股定理,算出太阳高度的方法,即书中还谈到了用一根直径一寸、长八只的中空竹管观测太阳,太阳的圆影正好与竹管的视线吻合,再进一步利用勾股定理推算出太阳的直径来。这说明我们的祖先至少在西汉年间,就能正确地应用直角三角形的勾股定理了。
& & 等到三国时代,吴国人赵爽用几何方法对勾股定理进行了相当严格的论证。公元前五百年,春秋战国时代的学者已经有了相当丰富的数学知识。庄子《天下篇》中有“一尺之捶,日取其半,万世不竭”的记载。意思是一根一只长的木棍,每天截掉一半,千年万载也截不完。直到今天,人们还常把“日取其半”作为了解“极限”思想的典型例子。
& & 大约在四千五百到三千五百年前的这段时期里,我国发明了第一辆车子。另外,从我国出土的许多殷代以前的陶器上也能看到不少圆形图案。这说明很早以前,我们的祖先就认识圆了。
& & 在《周辨算经》周公和商高的对话中,谈到“周三径一”,这是我国最初的圆周率,被称为古率。后来,圆周率数值的精确性不断得到提高。
& & 我国最早用严密的数学方法来求算圆周率数值的是刘徽。他认为古率为3,是圆内接正六边形的周长对直径的比值,这比圆周长对直径的比值要小得多。
& & 刘徽把圆内接正六边形各边所对的弧平分,做出圆内接正十二边形,利用勾股定理求出它的边长。同理,可以求出圆内接正二十四、四十八、九十六边形的边长。内接正多边形的边数越多,求出的圆周率数值也就越准确。这就是刘徽的“割圆术”。
& & “割圆术”用折线逐步逼近曲线,用圆内接正多边形的面积逐步逼近圆面积,这种用有限来逼近无限的方法,不仅提供了比较精确的圆周率的数值,而且为后来计算圆周率的人们奠定了坚实可靠的理论基础。
印度和阿拉伯:数字、零和代数
& & 印度在亚洲的南部。春天到来的时候,北边喜马拉雅山上的积雪开始融化,聚集成五条急流,汇总流入印度河。很早以前,在富饶的印度河谷地就出现了上古的居民达罗毗托人,世界最古老的文化之一就发源在这里。
& & 在一些方面,达罗毗托人的文化比埃及和苏马连文化高。他们有自己的独特的文字,有十进制的算法。大约公元前两千年的时候,印度人就已经使用51个字母组成的文字,数学在印度曾被认为最重要的科学之一。和许多古老的民族一样,它的头一批数学家也是僧侣。
& & 直到两千年前,印度人还使用由横划组成的数字。后来,他们开始用干棕榈叶做写字的材料,并且发展了草体书法,于是由一到九的各不相同的数字符号就这样日趋成形了。古印度人也用美索不达米亚商人的算盘来进行计算,每个数字符号都能很方便地表示算盘上任何一行的石子数。
& & 印度人新的数字符号要是到此为止不再发展,那意思就不大了。事实上,ZZ只能表示在任意两行沟里的两个石子,它可以是22,也可以是202、2020等等。这就是说,人们不仅要知道沟里有几个石子,还要知道它们各在那一行里。
& & 不知什么时候什么人,在前人智慧和成就的基础上,总结出了这样一个办法:用最右面的数字表示个位行里的石子数,左面相邻的数字表示十位行里的石子数。其它则以此类推,用点表示空行。这样,ZZ就只表示22,Z.Z.就只表示2020,而没有其它的意思了。表示空位的“.”,后来改用“0”代替。
& & 有了这个记数法,人们就可以用同一个符号记录算盘上任何一行上的同一个数字,简单清楚,书写方便。印度记数法的最大优点是能用数字来进行计算,这是一个了不起的进步!
& & 我们知道,古老的书写系统,包括埃及的、巴比伦的、希腊的、罗马的都是用不同的符号来表示算盘上不同行里的相同的石子数,不像我们今天可以用同一个“1”,在不同的数位上表示一、十和一百。因此每一位行都得用不同的加法表相乘法表,用它们做笔算或心算是很麻烦的。如果只有九个不同的符号,其中每一个都可以表示任何一行的石子数,零表示空行,那每一行上的计算就都是一样的了。这样,人们只要掌握一个表就行了,好懂、好背、好用。
& & 我国古代计算是用算筹。算筹为了避免相邻两位数码混淆,采用了纵横相间的办法,而是每一行的加法表和乘法表,一直都是一样的。
& & 印度人创造的这套数码1、2、3、4、5、6、7、8、9、0,是对数学知识的非常宝贵的贡献!它很快就引起了计算艺术的革命。
& & 印度数学家还研究了分数,并且能象我们今天这样书写它们。到公元五百年,伏拉罕密希拉能通过计算,预告行星的位置;阿耶波多论述了确定平方根的法则,给出了圆周率的近似值为3.1416。
& & 公元七世纪初期,伊斯兰教的创始人穆罕默德统一了整个阿拉伯地区。他死后的三百多年间,他的门徒带着这种新教,往西经过整个北非,进入西班牙和葡萄牙;往东越过印度河进入了亚洲的广大地区。
& & 大约在762年,穆斯林们建立了帝国首都巴格达城。四十年后,它成为世界著名的学术中心,就象希腊和罗马时期的亚历山大城一样。
& & 在公元八百年到九百年这一个世纪里,东西方的知识在巴格达得到了交流。东方来的商人和数学家带来了新的数字符号,印度算术和中国的算学成就;从西方选出来的异教徒带来了亚历山大强盛时期的科学著作,其中包括天文学和地理学的论文,还有欧几里得几何学。穆斯林学者把这些著作译成了阿拉伯文。
& & 穆斯林的天文学家发展的制图学,远远超过了亚历山大时期的水平。在巴格达的学校里,三角学盛行起来。由于掌握了印度的新算术,穆斯林数学家能更为完满地研究和应用欧几里得和阿基米得的几何学成就。航海家装备和改进了航海设备;地理学家也有了新的更好的大地测量工具。穆斯林世界的科学技术,取得了很高的成就。
& & 公元一千年,古罗马帝国的大部分地区被置于穆斯林的统治之下。在西班牙的穆斯林大学里,学生们可以学习希腊几何学、印度算术、天文学、三角学和地理学,而这些科学,巴格达学者都作了很大的改进。
& & 从十二世纪开始,穆斯林世界的科学知识逐渐传到欧洲各地。到了公元一千四百年,意大利、法国、德国和英国的商人们开始使用新数字,教授新算术的学校开始在整个欧洲兴起。半个世纪后,渐渐有了印刷术。算术教科书和航海历是主要的印刷品。
& & 新数字从一个地方传到另一个地方,常常一方面变形走样,一方面又保持着九个符号和一个零的样式。但是,如此先进的数字也并不是一开始就能在所有地方被接受的。十三世纪时,一项法令禁止佛罗论萨的银行业者使用新数字。一百年后,意大利的派丢厄大学还坚持书籍的价格表必须用罗马数字。直到十五世纪末,印度数字才在西欧的航海和商业中普遍使用。几个世纪后,虽然还有人坚持用算盘和计算板上的计算方法,但是越来越多的人热衷于学习新算术了。
& & 在早期印刷出版的教科书中,不少列表和解决加减乘除问题的简便方法,现在虽然已经成为博物馆里的东西了,但是这些教科书把新的简写符号,比如“十、—”等引进算术中却是十分重要的,尽管这些符号最早很可能是表示包裹超重和缺重用的,不是数学上的有意的发明。由于这些符号显示了作用,随后,另一些符号“×、÷、∴、=”,也逐渐被引了进来。
& & 对于我们现在用代数求解的某些问题,印度和穆斯林的数学家也早就发现了解它们的妙法,“代数”一词就是阿拉伯语。但是穆斯林数学家那时讲授的代数和我们现在学的代数是不一样的。他们的代数式都是文字写的,唯一的简写的符号是表示平方根的符号。
& & 代数学大约到十七世纪初才逐渐形成。下面我们来作一个简单的题目,看看代数学是怎样变化发展的:题目:一个数,乘以2,除以3,等于40,问这个数是多少? 印度和穆斯林的数学家是这样解的:因为这个数的三分之二是四十,它的三分之一就是四十的一半,即二十;又因为这个数是二十的三倍,得这个数是六十。引进一些数学符号以后,早期的算法是这样来求解的:(2×某数)/3=40,某数/3=1/2×40=20,某数=3×20=60。
& & 我们现在的代数,以字母n代替了“某数”,并且省去了乘号“×”。解法如下: 2n/3=40,n/3=20,n=60。
& & 公元一千二百年的穆斯林教师肯定能给出解这类问题的法则,但是语句势必冗长繁琐:如果你已经知道一个数,乘以第二个数,再除以第三个数,结果为已知的话,那么你就可以把这个结果乘以第三个数,再被第二个数来除,把原数求出来。
& & 现在,我们可以用n表示任意数,s表示第二数,t表示第三数,a表示得数,如果sn/t=a,那n=ta/s。写成这样的形式,法则就一目了然,清楚好记了。 希腊: 争论、证明和创新
& &和埃及、美索不达米亚、印度、中国相比,希腊形成国家要晚一些。但是,从对人类科学文化发展的贡献和影响来看,希腊完全可以和这些最古老的国家比美,它被称为欧洲的文明古国。
& & 古代希腊包括巴尔干半岛的南部,爱琴海和爱奥尼亚海的岛屿,还有克里特岛和小亚细亚的沿岸地区。半岛的东岸弯拐曲折,海湾很多,风平浪微,有许多优良的港口。
& & 古希腊人非常喜欢旅行和出海贸易,这使他们很早就接触了先进的东方文化。那时候,奴隶担负日常劳动,奴隶主就有足够的时间去评论市政、争辩法律诉讼和海外新闻,以此作为时髦的消遣。于是,那些善辩的人经常把一些人聚集在自己的周围作为门徒。
& & 公元前五百多年,毕达哥拉斯建立了青年兄弟会,以秘密的形式向会员传授数学知识。一个世纪后,雅典出现了学校,给青年讲授法律、政治、演说和数学方面的知识。新式的学校里没有了那种神秘的色彩,不论教师和学生,什么都可以写出来给人看。这种公开研究,自由争论,促进了一种新的数学思想和方法的产生。
& & 很早以前,人们就知道了边长为3、4、5和5、12、13的三角形为直角三角形。毕达哥拉斯发现了这两套数字的共同之处:最大数的平方等于另外两个数的平方和,即3²+4²=5²;5²+12²=13²。这就是说,以直角三角形最长边为边长的正方形面积,等于两个短边为边长的两个正方形面积的和。
& & 接着,毕达哥拉斯又研究了这样两个问题:一、这个规律是否对所有的直角三角形都成立?二、符合这一规律的任何三角形是否一定是直角三角形?
& & 毕达哥拉斯搜集了许许多多的例子,都肯定回答了这两个问题。据说,他为了庆祝自己的这个发现,曾杀了一百多头牛,举行了一次大宴会。这就是几何学中的勾股定理为什么又叫做毕达哥拉斯定理的由来。
& & 希腊的数学教师同时也讲授法律。学生学习数学也象学习法律那样,对教师给出的每一条法则都提出自己的异议,并且要求教师对所有的概念都作出准确的定义。这样就使得教师面临非常艰巨的任务,尤其是下定义,可不是一件容易的事。比如,怎样确切地定义一条直线?怎样给出圆的定义?怎样使别人不会把它们理解成别的图形?……
& & 不知经过了多少次的争论,人们才逐步意识到,最好的办法就是直截了当地叙述怎样用工具做出图形的。要用工具画图,这又引出了一个问题:什么工具是大家都同意使用的呢?那时的希腊人画几何图形规定只准用画线的直尺和画圆的圆规。
& & 在希腊之前的漫长年代里,人们已经知道了许多求面积和测角度的知识。可是谁也没有想到过用推理的方法把这些知识联系在一起,找出它们之间的内在关系,并且证明它们是可靠的。这就是说,这时的几何知识还处于零散的、互不联系的状态之中。没有系统,就没有几何学。
& & 好辩的希腊人,坚持每一个几何定律都必须通过辩论的验证,并且对各种相反的意见一一做出答复。这样,在证明新的定律时,就可以直接引用已经证明过的定律,而无需一切都从头开始。细心的希腊人对几何知识从不轻信,他们破格相信的只是那些十分清楚的解释和概念。他们从指导思想和具体方法两个方面,推动了几何学的形成和发展。
& & 大约在公元前三百年,欧几里得写了一套叫做《几何原本》的数学教科书,把希腊人在这方面的成就传给了我们。一千年后,许多希腊著作都散失和毁掉了,而《几何原本》却被译成阿拉伯文,作为穆斯林大学的教本。直到五十年前,欧洲和美洲各国的学校还在用翻译的《几何原本》作教科书。就是今天,初中学校里讲授几何学的主要内容也是来自欧几里得几何学。
& & 几何学的建立为测量、建筑、航海、天文,甚至为城市规划、乐器设计等提供了必要的工具。
& & 在毕达哥拉斯时代,希腊人知道的几何法则中有这么两条:一、任何三角形的三个内角和等于两个直角;二、三角形的两个内角相等,它们的对应边也相等。由第一个法则可以得到:如果三角形中有一个角是直角,另一个角是45°,那么第三个角也一定是45°;由第二个法则可以得到:对应于两个45°角的边一定相等。他们根据这两条法则,就可以利用阳光测量出地面上的物体高度了。
& & 当阳光成45°照射地面时,一根直立在地面上的柱子,连同它的影子和阳光,恰好组成这样一个三角形,测量柱高就不用爬到柱子上去了。因为柱子和它的影子都对应着45°的角,二者是等长的,只要量出影长就行了。
& & 当然,这个原理在其它许多方面也用得着。例如,要在岸上测出海上的船只离岸多远,只要在岸上确定两个点,使一个点与船的联线和海岸成直角,另一个点与船的联线与海岸成45°角,那么岸上两点间的距离,就是船与海岸的距离。
& & 这种方法,由于有45°角的要求,在实际测量中受到很大的限制。古埃及人在测量金字塔的高度时,使用了三角形的另一个法则:任意两个三角形,如果对应角相等,那么各组对应边的边长的比也相等。这样,直立在地面上的木杆高度,与它正午影子的长度比,就和金字塔的高度,与它正午影长加上地基宽度一半的比相等。木杆的高度和影长,金字塔的影长和地基的宽度都可以直接量出来。所以,金字塔的高度根据比例关系就能算出来了。
& & 掌握了对应三角形的法则后,角度限制没有了,一年四季里不管什么时候,都可以利用阳光来测量高度了。需要指出的是,古埃及人虽然会使用这个法则,却不会象希腊人那样能严格地证明它。
& & 公元前332年,古希腊的亚历山大大帝征服了埃及,下令在那里建造了亚历山大城。后来,这个城成了地中海的学术中心。
& & 大约在公元前240年,亚历山大城的教师伊拉托瑟尼算出了地球子午线的长度,这是几何知识在历史上的一次重大应用。
& & 伊拉托瑟尼从资料中得知阿斯旺附近的西恩正好在北回归线上。因为夏至那天的中午,在那里的深井里能看到太阳的倒影。这表明太阳正好在头顶的正上方,阳光垂直地面,直射向地球的中心。同是夏至这一天中午,他测量了亚历山大城的一根柱子的影子,算出了阳光偏离垂直方向7.2°。因为阳光是平行直射地面的,所以入射角度的这种差异应该是说明了地球表面的弯曲情况。
& & 现在我们来看看伊拉托瑟尼是怎样运用几何知识算出地球子午线的长度的。如图,画两条平行线:一条表示亚历山大城的太阳光线;另一条表示西恩的太阳光线。画亚历山大城的垂直线—柱子,它切割当地的光线成7.2°;切割西恩的光线于地球中心。
& & 根据平行线的内错角相等的知识,伊拉托瑟尼知道:亚历山大城、地心、西恩间的角度也是7.2°;而7.2°正好是360°圆的1/50。
& & 因为西恩在亚历山大城的正南,所以两地间的道路大体上就在跨越南北极的大圆上。这样,伊拉托瑟尼根据西恩到亚历山大城是480英里,就算出了地球大圆的周长等于480英里的50倍,得到24000英里(相当于38623公里),这就是地球子午线的长度了。我们知道,现在测得的地球子午线的长度是40008.5公里,伊拉托瑟尼的误差还不到4%。在麦哲伦首次环球航行前一千七百多年,就给出了如此精确的近似值,这确实是惊人的成绩!
& & 和伊拉托瑟尼大体同时的阿基米得是那个时代最卓越的数学家、物理学家和机械发明家。他制造了石弩和弩炮来打击敌人,保卫自己的国家。他做出了紧贴圆筒内壁的旋转器来抽水,解决了农田灌溉和船舱排水的困难。著名的浮力原理,也是他在判断皇冠是纯金还是金银混合物时发现的。今天我们用来测量液体密度的比重计,就是依据这个原理做成的。
& & 阿基米得在数学上有许多贡献。他运用圆内接和外切正四十八边形周长的平均数,相当精确地算出了圆周率的值是22/7。直到今天,这个数值足够一般工程技术采用。他研究过曲线的特性,象熏蚊子的盘香那样的曲线,我们今天就把它叫做阿基米得螺线。他还发现了许多求体积的方法。其中两种球和圆柱体的求积方法,就刻在他的墓碑上。
& & 比阿基米得晚五十年的希帕卡斯,汇集了希腊几何学的成就,编制了我们现在说的正弦表,这对测量和天文学极为有用。
& & 我们知道,三角形的三个内角和等于两直角。如果三角形中有一个角为直角,一个为已知角A,那第三个角B就等于直角与角A的差。角A的对边与斜边的比,称为角A的正弦。这个比,对于包括同样角度A的所有直角三角形来说都是一样的。当A为60°、45°、30°时,由勾股定理就可以确定出正弦值。希帕卡斯发现了另外的定理,可以算出其它许多角度的正弦值来,给天文和测量人员提供了很宽的角度范围。
& & 以亚历山大城为科学文化中心长达七百年之久,这是一个繁荣科学技术的时代。城市大规模的建筑,频繁的海上贸易,海陆大国之间连绵不断的战争,促进了测量和制图、航海和天文、采矿和力学的研究。希腊在数学方面的巨大成就,是不断取得科学技术进步的必不可少的条件。
& & 英语中的“算术”一词来源于希腊语。但是希腊语的“算术”并不是今天的数字计算的意思,而很可能是指“数字游戏”。
& & 那时候最著名的是所谓三角数字1、3、6、10等等。它们是按1、1+2、1+2+3、1+2+3+4等等组成的。毕达哥拉斯青年兄弟会发誓保守秘密之一,就是如何说出这组数中的任意一个是多少。
& & 其实,要说出其中任一数是多少的办法很简单。比如要求第五个数,就用(5+1)去乘5,然后被2除,结果得15;要求第二十个数,就用(20+1)去乘20,然后被2除,结果得210。
& & 石子游戏可能是使希腊人找到求连续奇数和的方法的起源。从1开始,连续10个奇数的和是10×10=100;要是增加到20个奇数,那和为20×20=400。
& & 另一种数字游戏可以用芝诺的一个著名诡辩来代表。芝诺是一个很有才能的数学家。他问道:阿溪里斯是古希腊传说中善跑的神,要是让他和乌龟赛跑,并假定他的速度为乌龟的10倍。乌龟先出发了100米。然后,阿溪里斯开始追赶乌龟。当阿溪里斯跑完这100米时,乌龟又已经向前走了10米;当阿溪里斯跑完这10米时,乌龟又向前走了1米……。阿溪里斯的速度再快,走过一段距离总得有一段时间,而在这段时间里,乌龟速度再慢,也总要走出一段距离来。这样说起来,阿溪里斯是永远追不上乌龟了。
& & 人们从实际经验中知道,结果肯定不会是这样的。阿溪里斯一定会超过乌龟的,但是在很长的时间里,人们不知道问题出在了哪里,当然也就不知道怎样才能驳倒芝诺的诡辩了。
& & 今天,我们都可以算出芝诺这个诡辩站不住脚。乌龟尽管可以100米、10米、1米、0.1米、0.01米……赶在阿溪里斯的前面;但是,这总是在离开起点1/9公里之内,不会超过这个范围。所以,阿溪里斯在离开起点1/9公里的地方,就超过了乌龟。在这里,“永远”并没有迷住我们的眼睛。越来越小的许多分数相加,不管小到何等程度,它们的总和有一个具体限度,在数学上就叫做极限。在这里,1/9公里是乌龟在前的极限,所以阿溪里斯一定能超过它。
& & 字母的使用,曾经使希腊人大大简化了文字。他们也希望在数字计算中,能得到同样的便利。最初,希腊人用表示一个数的字头来代表数,这就是用Δ表示10,H代表100,X表示1000,就好像英语中用T代表Ten,H代表Hundred一样。数字再大,就按需要重复这些符号就行了。这种数的写法和埃及的非常象。你看这两种写法,写同一个数3420的样子如右图:
& & 到公元五世纪,希腊人采用了一种完全不同的记数方法。他们以头九个字母表示1到9;接着的九个字母表示10到90;最后的九个字母表示100到900;在任何数的前面划一道,表示这个数是原数的一千倍。这个新的数字系统需要27个字母,但是希腊的字母只有24个,所以增加了三个古老的和外来的字母。
& & 采用这种记数方法,唯一的好处是一些大数字简短好写,不占篇幅;严重的毛病是计算困难,使用很不方便。今天,我们在数学中是把字母作为一种简写符号使用的。比如bh/2表示三角形的面积等于底乘高被2除。这种简洁的表示方法对于把字母固定成数的希腊人来说是根本不能使用的。
& & 后来,罗马人打败了希腊人,成为地中海地区的霸主。他们在希腊人的基础上,建立了自己的记数方法。大约两千年前,罗马军队征服了欧洲南部、高卢、英国大部分、非洲北部边缘和西亚的大片地区。希腊语作为学习的语言被保留下来。
& & 公元四世纪,罗马帝国分为东西两个部分。东罗马部分继承了希腊文明,保存了希腊的学术语言和传统;而西罗马就很快丢掉了希腊的语言和科学,长期处于落后保守之中,停步不前。
& & 西方在数学、科学等各个方面需要学习和援助。这些援助来自东方的阿拉伯、印度和中国。 腓尼基:航海、星辰和字母
& &古代称为腓尼基的地方在地中海东岸、黎巴嫩山西侧,也就是现在的叙利亚沿海的那部分。那里有十几个沿海城市,每个城市都是附近地区的政治中心,也都是独立的国家。腓尼基的文化和历史可以追溯到公元前四千年。
& & 公元前一千五百年左右,腓尼基的海外贸易蓬勃发展,许多腓尼基人纵横航行于地中海,往来各地进行交易,很快便以勇敢的航海家和商人闻名于世。
& & 在远航和贸易中,腓尼基人遇见了欧洲和大西洋沿岸文化落后的民族,也看到了文明的埃及人和美索不达米亚人。他们从一个地方到另一个地方,运回了各式各样值钱的货物,也带回了各地的科学文化知识。
& & 有些知识在近海地方是尽人皆知、习以为常的,而对长期住在内陆的人来说会觉得十分费解。比如巴比伦的农民经常看到的是原野,所以认为“地平如镜”,当他们听到大地是圆球状的时候,自然是一笑置之,不会接受。腓尼基人与海为邻,在日常生活中就认识到了这一点。
& & 航船进港,人们在陆地上首先看到的是桅杆的顶部,然后出现了风帆,最后才是整个的船;而船上的人是先看到岸上山峰的峰顶,接着是低处的山坡和建筑物,最后才是港口的全貌。人们从这些现象里,自然会得出结论:大地的表面是弯曲的!
& & 腓尼基人长期在狭长的地中海中航行,一般总能看到陆地或者飞鸟,驾驶员只要能辨认出这些陆地标志就行了,用不着更多的航海知识。后来,雄心勃勃的腓尼基人穿过直布罗陀海峡,驶进了大西洋。那里没有熟悉的陆标指引航向了,他们不得不自己记录船只的航向和航程了。
& & 沿着欧洲海岸南北航行,腓尼基人见到了一幅完全新的天空变化景象。一年里,不管是哪一天,在北方港口看到中午的太阳总是比在南面港口看到的低一些,桅杆投下的影子也长一些。同一天里,中午的太阳影子在不同地方的长度不同,这就是航海者标记港口位置的最早方法。夜晚向北航行时,他们会发现北极星每晚都会升高一点;而当他们沿非洲海岸向南航行时,北极星又会每晚向地平线下落一点。
& & 很早以前,人们就发现了阳光、月光和星光是平行的直线。腓尼基人把这个古老的知识和太阳在不同纬度以不同的角度砌的现象联系起来,更加确认大地是圆球状的。阳光平行照射在地球表面上,如果大地真是“地平如镜”的话,那么不管在什么地方,阳光的入射角应该都一样了。
& & 他们在航行中还有一些发现,也加强了对地球的这个认识。在家乡时,一年三百六十五天,每一天中午的太阳影子总是指向北边的。但是在非洲西海岸一定的地方(大约在北纬二十三度半的北回归线),夏至日中午的阳光却在人们脑袋顶上直射下来,没有影子。这一天要是再往南一点,影子就指向南了。
& & 一个偶然的机会,一只腓尼基船沿着非洲西海岸向南远航。快到赤道时,船员发现北极星几乎就落到地平线上了;再往南走,就完全看不见了。这时,夜幕上出现了许多在北方从没见过的星星和星群。
& & 腓尼基的航海家,用他们新的天文经验和认识,开创了新的航海科学,促进了几何学的进一步发展。在美索不达米亚文化的早期,人们就已经知道把圆划分成三百六十度;到了这时,人们把跨越地球南北极的大圆(圆平面经过地球的球心),也用同样的方法来划分。
& & 随着时间的流驶,腓尼基人的海上地位逐渐衰落了,代之而起的是西西里、克里特、塞浦路斯和希腊。大约在公元前四百年,希腊地理学家画的航海图上已经可以认出地中海的海岸线来,希腊很快成了海上强国,但是它的先进的文字却是来源于腓尼基。腓尼基人最早使用字母文字,用数量不多的表示声音的简单符号,代替了大量的表示语言或意思的象形符号,非常简便,非常好学。公元前六百年,希腊人把腓尼基字母用于自己的语言。现代欧洲各国的拼音文字差不多都来源于经过改造的腓尼基字母。 美索不达米亚:贸易、天文和圆
& &尼罗河三角洲以东,大约一千六百公里的地方,奔流着另外两条大河,一条叫底格里斯河,一条叫幼发拉底河。这两条河发源于今天的土耳其境内,流经叙利亚,在伊拉克南部汇合成阿拉伯河,最后流入波斯湾。两河之间和沿岸一带叫做美索不达米亚,是另一个最古老的文化发源地。
& & “美索不达米亚”一词是希腊语,意思是“两河中间的地方”。它西接阿拉伯沙漠,东邻扎格罗斯山脉。很早以前,人类就在那里生息繁殖,曾经建立了巴比伦等古国,并且创造了辉煌的美索不达米亚文化。
& & 历史学家把这支古老的文化分为苏马连、巴比伦、亚述和迦勒底四个时期。苏马连人是美索不达米亚文化的创始者,他们在五千年以前就有了象形文字。后来的巴比伦人和亚述人继承和发展了苏马连文化,使得美索不达米亚在数学和天文学方面的一些成就超过了埃及。
& & 在美索不达米亚和在埃及一样,文化主要把持在统治阶级僧侣手里。大约在公元前两千年,两地的僧侣分别建立了寺庙图书馆,把记载着各种知识的秘本收藏在里边。除了少数僧侣外,一般人是无法阅读这些书的。这样也就影响了这两支古老文化的传播和交流。
& & 美索不达米亚很早就有大量的对外贸易。它自己没有建筑用的木材,没有僧侣和君王穿戴的绸缎和宝石,没有做丰盛佳肴的调料,缺少制作寺庙供器的贵重金属。为了得到这些东西,许多商人赶上毛驴或者骆驼,组成商队,翻过扎格罗斯山,穿过阿拉伯沙漠,西到黎巴嫩买杉木,北到小亚细亚买金、银、铅、钢,东面可能远到印度和中国,去换回丝绸、染料、香料和宝石。
& & 商人们在贸易中就会遇到计量的问题。起初,他们买卖商品不是论斤两,而是按驮。比如一头驴驮的粮食换一头驴驮的棉花。但是在进行昂贵商品交易的时候,就必须精打细算了。于是,随着贸易的发展,天平和标准容器在美索不达米亚普遍使用起来。商人们在称量笨重物品的时候,用泰仑为单位(约合25公斤),称量精细物品的时候,以舍克为单位(约合9克)。
& & 以物易物,给商人们带来沉重的负担和很多的不便。比如想要用粮食换木材,但是有木材的不一定要粮食;而要粮食的又不一定有木材。要是有一种东西大家都愿意要,那么商人们之间的贸易就会方便得多了。曾经有一个时期,差不多人人都愿意要大麦。那时候大麦除了做面包和酿酒外,还可以用来支付工资和换取任何别的东西。这样,商人们到外地做买卖,只要用毛驴和骆驼驮上大麦去,就很快换回自己所需要的东西了。
& & 后来,人们发现银子能换的东西多,携带方便,久放不坏,人人都愿意要,是一种做买卖的好物品。开始,商人们按照成交的多少,每次都得称量银子。以后,就铸造成一小块一小块的银条,每块银条上都标好了重量。这就是世界上最早的金属货币。我国古代用银子买卖东西的情况也是这样。
& & 金属货币的出现,使人们第一次有了一种可以长期储存、又不会变坏的财富。它促进了贸易和生产的发展!
& & 随着贸易范围和数量的不断扩大,人们需要经常掌握买进和卖出的情况,于是又出现了记账和算账的问题。
& & 古老的美索不达米亚文字和书写材料使得记账成为一项非常艰巨的工作。书写的时候,得先把粘土做成方形的板砖,然后用尖木棍在上面刻字,最后把泥板放在太阳下晒干或者在火上烤干。这么复杂的过程,写起来很慢,改写、保管和查看也很不方便。不过,一经写成就不容易损坏了。近年来,考古学家在两河流域发掘出成千块这种刻有楔形文字的泥板,虽然经历了几千年,上面刻写的图文仍然清晰可见。这是我们了解古代美索不达米亚文化的重要依据。
& & 尽管当时美索不达米亚的对外贸易量大,有相当精密的度量衡,又有了金属货币,但是它的文字记账方法实在落后。幸好,那时候一般人都不采用书面的计算法,而是在地上铺一层沙子,在沙子的沟里放小石子进行计算。这个装置和埃及人的办法差不多,我们也可以把它叫做原始的算盘。它虽然简陋,却方便好用。
& & 在美索不达米亚商人的算盘里,当一个石子在沟与沟之间移动的时候,数值也跟着相应变化:第一行为1,第二行为10×1,第三行为10×10×1,在第四行为10×10×10×1,如此等等。就是说,每一行沟里的石子比它前一行里的数值大十倍,比它后一行里的数值小十倍。用我们现在的话来说,这就是以十为基数。
& & 大多数的古代数字系统都用十做基数。我们猜测,人们在开始的时候大概都是用十个手指来数数的。其实,“十”这个数并没有什么奇特的地方,用别的数做基数也同样很方便。美洲中部的马雅人以二十为基数,想来他们在开始的时候,很可能是用手指和脚趾一起来计数的。
& & 美索不达米亚人有时也以六十为基数。由巴比伦人创造的六十进位制一直沿用到现在。我们今天计算时间,就是把一小时分成六十分钟,一分钟又分成六十秒;对于地球经纬度的划分,也是把一度分成六十分,每一分又分成六十秒。六十进位制的产生,可能是和天文学的发展有关系。苏马连人和巴比伦人在天文学上曾取得了很高的成就。
& & 除了算盘,美索不达米亚人还掌握了另外一些简便的数字计算方法。在靠近幼发拉底河岸的古代庙宇图书馆遗址里,曾发掘出大量的粘土板。有不少粘土板上刻着乘法表和加法表,还有一些刻着平方表。他们用简单的平方表,就能很快算出任何两数相乘的积。现在,我们来看他们是怎样算96×102的:
  第一步,(102+96)÷2=99;
  第二步,(102-96)÷2=3;
  第三步,查平方表,知99的平方是9801;
  第四步,查平方表,知3的平方是9;
  第五步,92=96×102。
& & 美索不达米亚人的这种求积方法是正确的,我们用现在的代数方法很容易弄清楚它的原理。
& & 利用平方表做乘法没有算盘方便,所以它不像算盘那样流传广,使用时间长。在很长的时期里,欧洲的商人和店员都喜欢使用象算盘那样的计算板。在中国、日本和前苏联,至今还有许多人使用着算盘。
& & 中国和日本的算盘属于同一个来源。它的特点是梁下以一珠当一,梁上以一珠当五。这是在以十进位的基础上,添了一个五进位的中间单位。这样不仅节省了算珠,而且增加了计算的速度。
& & 大约在六千年前,美索不达米亚人做出了世界上第一个轮子。这是人类史上最伟大的发明之一!你想,即使是今天最现代化的机械,也几乎没有一样能够离得开轮子的。
& & 最初的轮子简单得很。它是用木头做成一个圆盘,中间挖一个洞,穿过一根木头做轴,使圆盘能绕着轴转动。
& & 到了巴比伦和亚述的时候,出现了打仗用的战车和进行贸易的车辆。车上的轮子已经有了辐和毂等,和今天还能见到的老式车轮差不多。美索不达米亚人还发现圆木轮的其他用途。比如陶工利用旋轮制作精细的器皿,建筑工人利用滑轮吊起重物等。
& & 由于轮子是美索不达米亚人发明的,很容易使人想象他们在那个时候一定掌握了不少关于圆的几何学知识。实际上,他们甚至还不如埃及人。埃及人计算圆的周长时,是把圆的直径乘以3.14;而美索不达米亚人在计算时用的是3。我们知道,圆周率π=3.14159……,是一个不循环的无限的小数,叫做无理数,用3来代替它,就是用正六边形的周长来代换圆的周长,是相当粗糙的计算方法。
& & 美索不达米亚人对圆的认识虽然比埃及人差,可是他们实际运用几何的能力,特别是在天文方面却比埃及人先进。他们把太阳在天上一昼夜经过的轨道分成三百六十度。后来又把这种分法应用于一切圆形物体。他们已经会区分恒星和行星,给五个行星起了专门名称,这就是金星、火星、木星、水星、土星。
& & 在一部五千年前献给巴比伦国王的占星学著作里,已经列出了一个很长的蚀亏表,表中关于日食和月食的日期相当准确。
& & 巴比伦的空气清朗,僧侣们每夜观察天空的景象,并把他们的观察结果记录在土碑上。他们逐渐看出天文现象的周期性,觉察到某些天体的运动是有规律的。有一个文件说,他们已经能够计算出太阳和月亮的相对位置,所以能够预测日食和月食。
& & 现在我们知道,地球自转一周是一日;月球绕地球转动一周为一月;地球带着月球绕太阳公转一周为一年。它们的运动都有各自的轨道。我们还知道,月球不会发光,月光是太阳光在月球表面上反射出来的。当地球运动到太阳和月亮之间的联线上时,太阳射到月球上的光线被地球遮住了,月球正好在地球投下的阴影里,月蚀就发生了。同样的道理,如果月球运动到地球和太阳之间的联线上,日蚀就发生了。美索不达米亚人能够比较准确地预告日食和月食,说明他们很可能也懂得了我们上面说的道理。
& & 美索不达米亚人看到月偏蚀的时候,月亮上的阴影总是带着圆边,于是就猜到了地球本身也是圆的。考古学家曾经发现了一些巴比伦时代描绘的想象地图,形状就跟我们今天用的硬币差不多;还发现了这样的地图,巴比伦居中,并且占的面积很大。 埃及:建筑、测量和三角形
& &非洲东北部有一条举世闻名的大河——尼罗河。它穿过非洲北部的撒哈拉大沙漠,流入地中海,两岸狭长地带便成了肥沃的绿洲。河的下游流经的地方,孕育了最古老文明之一的埃及。
& & 尼罗河三角洲一带盛产一种水草,名叫纸草。古埃及人把纸草的茎一层一层地撕成薄片,再一张一张地粘起来,就成了写字用的纸。有不少古埃及纸草纸一直被保留到今天,成为我们考察埃及历史文化的珍贵材料。
& & 埃及人大约在公元前三千五百年就已经有了文字。保存下来的最早记录数学知识的纸草纸现在珍藏在英国大英博物馆。写这份纸草纸的,是生活在公元前一千六百年到一千八百年间的阿摩斯。据他说,纸草纸上的内容,又是他从公元前两千二百年以前的旧卷子上转录下来的。在这份纸草纸上,记载了一些分数和算术四则运算的说明,还有关于测量的规则。
& & 古埃及的皇帝叫做“法老”,著名的金字塔就是法老的坟墓。今天,在尼罗河三角洲南面,散布着七十多座金字塔。齐阿普斯皇帝的金字塔是其中规模最大的一座:塔高一百四十六点五米;塔基每面长约二百四十米,绕塔一周约一公里;塔内有甬道、石阶、墓室等。这座金字塔是在公元前两千八百年建成的,在一八八九年巴黎埃菲尔铁塔建成以前的四千六百多年间,它一直是世界上最高的建筑物。这确实是了不起的奇迹!古埃及人在建造这些巨大建筑物的过程中,积累了丰富的几何学知识。
& & 我们设想,在建造金字塔之前,一定得先画出一张平面图。估计这张图是画在粘土板上的,它大概就是世界上的第一张平面图了。分析起来,制图人肯定知道,图样和竣工后的建筑物,尺寸尽管可以不同,形状却是一样的。由此可以判断,当时的埃及人已经掌握了比例和相似形的知识。
& & 画出平面图后,应该平出一大片空地,在地上放出实际尺寸,准备动工。建筑材料都是几吨重的大石块,一座金字塔要用许多这样的石块。那时候还没有发明车辆,也没有像样的道路,只能用船沿着尼罗河把石头运到尽量靠近的地方,再用滚木把它们运到工地。每块石头都得事先按一定的形状凿好、磨平。石块的每个角,都要用丁字尺或者三角板反复校正成直角。接着,铺设庞大的石头层作地基。第二层要按一定的比例小一些,并且使每一层正好放在下面一层的中间。这样一层一层往上加,四面相等地缩小,最后准确地在塔尖会合在一点。
& & 一座金字塔,要用几十万人和几百万块巨石,在几十年的时间内才能建成,能够不出差错,你看古埃及人在设计、计算、测量和施工方面该有多么高明!
& & 怎样准确画出直角,很可能是古埃及人要解决的最大难题。因为金字塔的地基必须严格地成为正方形,四个角就必须是严格的直角;不管是哪一个角有微小的偏差,都会使整个建筑物走形。那时候还没有发明测量仪器,要做出周长一公里那么大的正方形,实在不简单!
& & 他们很可能是这样来解决这个问题的:先在地上打进两个木桩,然后绷紧木桩间的绳子,这样就画出一条直线,成为金字塔的一条边线。然后,在两个木桩上各系上一条绳子,绳子的长度要超过两个木桩距离的一半。拉紧绳子的末端,以木桩为原点转动,画出两条相交的圆弧来。过这两条圆弧的交点,画出另一条直线,和头一条直线相交,夹角就是准确的直角。这后一条直线,就是地基的另一条边线。
& & 那么,要检查墙壁或者巨石的一面是否直立,怎样在空中做出直角来呢?古埃及人巧妙地使用了锤准线。这个方法直到今天还在使用着。锤准线自由摆动,在空中画出圆弧,当它停下来的时候就与地面成直角。要是墙壁能和锤准线平行,它就和地面垂直。
& & 现在,我们都知道画直角的简便方法是使用直角三角板。但是,这必须首先做出一个直角三角形来。
& & 古埃及人使用绳子丈量土地。职业结绳者的工作就是在测量用的绳子上打出等间隔的绳结。可能就是他们最先发现了某些长度一定的三条绳子所组成的三角形,其最长边所对应的那个角是直角。其中一种是由3个、4个、5个等间隔的绳结长度组成的;另一种取5个、12个、13个等间隔的绳结长度。把窄木条锯成这样的长度,首尾相接,就做成一个直角三角板。有了这种三角板,以后的测量和画图就方便了。
& & 农民在盖自己住的小屋的时候可以说:“我这个屋子六步长,四步宽,屋顶比我脑袋高一柞”。设计大型建筑金字塔可不能这样。因为工人成千上万,每个人的步和柞都不一样。于是,他们就规定出以某一个人——据说是当时国王身体的某一部分的长短,作为标准单位;再按这个标准单位,制作一定长度的木头条或者金属条,作为大家通用的度量工具。这就是最早的尺子。
& & 在埃及,主要的长度单位是腕尺,它是自肘到中指尖的长度。小一些的单位有:掌尺,它等于七分之一腕尺;指尺,它等于四分之一掌尺。因为那时候的埃及人理解分数的意义非常费劲,所以这些小单位很有用。今天,人们熟悉分数了,但是在习惯上,大家一样喜欢用小单位。比如英国人和美国人总是说七英寸,不肯说十二分之七英尺。在我国,有说半尺的,但是谁也不说十分之五尺。
& & 每年收获季节,埃及的僧侣都要向农民征收赋税。农民主要是上交自己的农产品,这就需要标准重量单位来称量谷子、油、酒等;而捐税的多少,又是按土地的多少来定的,这又需要丈量和计算土地面积了。
& & 求面积的方法,最初很可能是工匠在铺设方砖地面的时候学会的。他们发现:一块地面,如果是三砖长、三砖宽,需要铺九块砖(3×3);另一块地面,三砖长、五砖宽,就需要铺十五块砖(3×5)。这样,计算正方形和长方形的面积,只消用长乘以宽就行了。
& & 但是问题在于,不是所有的土地都是正方形或者长方形。有些土地,好像那儿都是边,那儿也有角,形状很不规则,把它们分成若干个三角形倒是方便的。怎样才能求出三角形的面积呢?其实,一旦掌握了长方形和正方形面积的求法,三角形面积也就不难求了。
& & 一块正方形的麻布,可以折叠成两个大小相等的三角形,每个三角形的面积,恰好是正方形面积的一半。估计古埃及人正是从这类简单的线索中,学会了求三角形面积的方法:长乘宽,再除以二。
& & 测量土地的工作,想来是十分繁重的。因为埃及的土地主要分布在尼罗河沿岸,每年七月中旬,河水开始泛滥,淹没大量土地,一直到十一月才开始退落。洪水退去后,田野里留下一层肥沃的淤泥,帮助农民获得好收成;可是洪水把地界冲掉了,年年都得重新测量土地。因此,人们常把几何学起源于埃及的原因,归功于尼罗河水的泛滥。
& & 在大量的测量工作中,埃及人当然会碰到“圆”这类难办的图形。他们感到难办的地方,是无法把圆分成许多块三角形,而每一块都是由三条直线组成的标准三角形。因此,古埃及人认为圆是天赐予人们的神圣图形。今天,我们都很熟悉圆,天天和圆打交道,可是要认识和掌握好圆的性质也不容易。
& & 实践出真知。早期的埃及人,一定是用绳子绕木桩的方法来画圆。他们从长绳子画出来的圆大,短绳子画出来的圆小,知道了圆面积的大小,是由圆周到圆心的距离来决定的。这就是我们常说的半径。
& & 到了三千五百年前左右,当金字塔已成为古迹的时候,一个叫阿赫美斯的埃及文书,写出了一条这样的法则:圆的面积,非常接近于半径为边的正方形面积的三又七分之一倍。这在当时是很了不起的发现!
& & 阿赫美斯是怎样得到这个求圆面积的方法的,我们恐怕永远弄不清楚,只能猜想他大概还是用划三角形的方法。现在,他的纸草纸手稿装在精致的镜框里,悬挂在伦敦大英博物馆里。
& & 分散在世界各地博物馆中的纸草纸手稿,虽然能帮助我们了解古埃及的数学,不过现有的大部分资料,还是从考察尼罗河畔的古建筑得来的。
& & 有的金字塔,四面准确地对着东西南北,可见古埃及人确定方向的本领很高明。他们可能是根据一个高大的石柱阴影,来确定东西南北的。
& & 有一座大庙的遗址,至今屹立着一排柱子。在一年三百六十五天中,只有夏至这一天早晨的阳光,能沿着这一排柱子照射进去。数一数太阳光两次正好沿着这行柱子照进庙堂的天数,这就是一年的长短。
& & 在测定时间方面,埃及人也是根据日月星辰的位置和物影来确定的。不过,他们比原始狩猎者和采集者进步得多。早晨,原始人看到长长的物影,顶多只能说“时间还早啦!”埃及人有日规,看看有刻度的木条上的影子,就能说出“上午第二个时辰快到了!”
& & 从此,人们有了真正的科学。不过,古埃及留下来的许多图画,画的是上帝掌管日夜时辰的忙碌情景。看来他们是背着一个十分沉重的迷信包袱,在科学的道路上艰难地摸索着。 中国数学史
& & 数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽
& & 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。
& & 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
& & 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。
& & 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
& & 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。
& & 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。
& & 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。
& & 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。
& & 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
中国古代数学体系的形成
& & 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。
& & 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
& &《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。
& & 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。
& & 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。
中国古代数学的发展
& & 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
& & 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。
& & 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 。
& & 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
& & 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3..1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。
& & 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;
& & 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。
& & 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。
& & 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。
& & 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。
& & 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
中国古代数学的繁荣
& & 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。
& & 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。
& & 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。
& & 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。
& & 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。
& & 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。
& & 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。
& & 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。
& & 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。
& & 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。
& & 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。
& & 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。
& & 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。
  中西方数学的融合
& & 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。
& & 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。
& & 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。
& & 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。
& & 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。
& & 在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。
& & 其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。
& & 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。
& & 清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。
& & 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学百科全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。
& & 综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。
& & 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。
& & 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。
& & 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。
& & 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。
& & 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。
& & 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。
& & 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。
& & 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。 古希腊数学
& & 古希腊的地理范围,除了现在的希腊半岛外,还包括整个爱琴海区域和北面的马其顿和色雷斯、意大利半岛和小亚细亚等地。公元前5、6世纪,特别是希、波战争以后,雅典取得希腊城邦的领导地位,经济生活高度繁荣,生产力显著提高,在这个基础上产生了光辉灿烂的希腊文化,对后世有深远的影响。
& & 希腊数学的发展历史可以分为三个时期。第一期从伊奥尼亚学派到柏拉图学派为止,约为公元前七世纪中叶到公元前三世纪;第二期是亚历山大前期,从欧几里得起到公元前146年,希腊陷于罗马为止;第三期是亚历山大后期,是罗马人统治下的时期,结束于641年亚历山大被阿拉伯人占领。
& & 从古代埃及、巴比伦的衰亡,到希腊文化的昌盛,这过渡时期留下来的数学史料很少。不过希腊数学的兴起和希腊商人通过旅行交往接触到古代东方的文化有密切关系。
& & 伊奥尼亚位于小亚细亚西岸,它比希腊其他地区更容易吸收巴比伦、埃及等古国积累下来的经验和文化。在伊奥尼亚,氏族贵族政治为商人的统治所代替,商人具有强烈的活动性,有利于思想自由而大胆地发展。城邦内部的斗争,帮助摆脱传统信念在希腊没有特殊的祭司阶层,也没有必须遵守的教条,因此有相当程度的思想自由。这大大有助于科学和哲学从宗教分离开来。
& & 米利都是伊奥尼亚的最大城市,也是泰勒斯的故乡,泰勒斯是公认的希腊哲学鼻祖。早年是一个商人,曾游访巴比伦、埃及等地,很快就学会古代流传下来的知识,并加以发扬。以后创立伊奥尼亚哲学学派,摆脱宗教,从自然现象中去寻找真理,以水为万物的根源。
& & 当时天文、数学和哲学是不可分的,泰勒斯同时也研究天文和数学。他曾预测一次日食,促使米太(在今黑海、里海之南)、吕底亚(今土耳其西部)两国停止战争,多数学者认为该次日食发生在公元前585年5月28日。他在埃及时曾利用日影及比例关系算出金字塔的高,使法老大为惊讶。
& & 泰勒斯在数学方面的贡献是开始了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃。伊奥尼亚学派的著名学者还有阿纳克西曼德和阿纳克西米尼等。他们对后来的毕达哥拉斯有很大的影响。
& & 毕达哥拉斯公元前580年左右生于萨摩斯,为了摆脱暴政,移居意大利半岛南部的克罗顿。在那里组织一个政治、宗教、哲学、数学合一的秘密团体。后来在政治斗争中遭到破坏,毕达哥拉斯被杀害,但他的学派还继续存在两个世纪之久。
& & 毕达哥拉斯学派企图用数来解释一切,不仅仅认为万物都包含数,而且说万物都是数。他们以发现勾股定理(西方叫做毕达哥拉斯定理)闻名于世,又由此导致不可通约量的发现。
& & 这个学派还有一个特点,就是将算术和几何紧密联系起来。他们找到用三个正整数表示直角三角形三边长的一种公式,又注意到从 1起连续的奇数和必为平方数等等,这既是算术问题,又和几何有关,他们还发现五种正多面体。
& & 伊奥尼亚学派和毕达哥拉斯学派有显著的不同。前者研习数学并不单纯为了哲学的兴趣,同时也为了实用。而后者却不注重实际应用,将数学和宗教联系起来,想通过数学去探索永恒的真理。
& & 公元前五世纪,雅典成为人文荟萃的中心,人们崇尚公开的精神。在公开的讨论或辩论中,必须具有雄辩、修辞、哲学及数学等知识,于是“智人学派”应运而生。他们以教授文法、逻辑、数学、天文、修辞、雄辩等科目为业。
& & 在数学上,他们提出“三大问题”:三等分任意角;倍立方,求作一立方体,使其体积是已知立方体的二倍;化圆为方,求作一正方形,使其面积等于一已知圆。这些问题的难处,是作图只许用直尺(没有刻度的尺)和圆规。
& & 希腊人的兴趣并不在于图形的实际作出,而是在尺规的限制下从理论上去解决这些问题,这是几何学从实际应用向系统理论过渡所迈出的重要的一步。
& & 这个学派的安提丰提出用“穷竭法”去解决化圆为方问题,这是近代极限理论的雏形。先作圆内接正方形,以后每次边数加倍,得8、16、32、…边形。安提丰深信“最后”的多边形与圆的“差”必会“穷竭”。这提供了求圆面积的近似方法,和中国的刘徽的割圆术思想不谋而合。
& & 公元前三世纪,柏拉图在雅典建立学派,创办学园。他非常重视数学,但片面强调数学在训练智力方面的作用,而忽视其实用价值。他主张通过几何的学习培养逻辑思维能力,因为几何能给人以强烈的直观印象,将抽象的逻辑规律体现在具体的图形之中。
& & 这个学派培养出不少数学家,如欧多克索斯就曾就学于柏拉图,他创立了比例论,是欧几里得的前驱。柏拉图的学生亚里士多德也是古代的大哲学家,是形式逻辑的奠基者。他的逻辑思想为日后将几何学整理在严密的逻辑体系之中开辟了道路。
& & 这个时期的希腊数学中心还有以芝诺为代表的埃利亚学派,他提出四个悖论,给学术界以极大的震动。这四个悖论是:
& & 二分说,一物从甲地到乙地,永远不能到达。因为想从甲到乙,首先要通过道路的一半,但要通过这一半,必须先通过一半的一半,这样分下去,永无止境。结论是此物的运动被道路的无限分割阻碍着,根本不能前进一步;阿基琉斯(善跑英雄)追龟说,阿基琉斯追乌龟,永远追不上。因为当他追到乌龟的出发点时,龟已向前爬行了一段,他再追完这一段,龟又向前爬了一小段。这样永远重复下去,总也追不上;飞箭静止说,每一瞬间箭总在一个确定的位置上,因此它是不动的;运动场问题,芝诺论证了时间和它的一半相等。
& & 以德谟克利特为代表的原子论学派,认为线段、面积和立体,是由许多不可再分的原子所构成。计算面积和体积,等于将这些原子集合起来。这种不甚严格的推理方法却是古代数学家发现新结果的重要线索。
& & 公元前四世纪以后的希腊数学,逐渐脱离哲学和天文学,成为独立的学科。数学的历史于是进入一个新阶段——初等数学时期。
& & 这个时期的特点是,数学(主要是几何学)已建立起自己的理论体系,从以实验和观察为依据的经验科学过渡到演绎的科学。由少数几个原始命题(公理)出发,通过逻辑推理得到一系列的定理。这是希腊数学的基本精神。
& & 在这一时期里,初等几何、算术初等代数大体己成为独立的科目。和17世纪出现的解析几何学、微积分学相比,这一个时期的研究内容可以用“初等数学”来概括,因此叫做初等数学时期。
& & 埃及的亚历山大城,是东西海陆交通的枢纽,又经过托勒密王的加意经营,逐渐成为新的希腊文化中心,希腊本土这时已经退居次要地位。几何学最初萌芽于埃及,以后移植于伊奥尼亚,其次繁盛于意大利和雅典,最后又回到发源地。经过这一番培植,已达到丰茂成林的境地。
& & 从公元前四世纪到公元前146年古希腊灭亡,罗马成为地中海区域的统治者为止,希腊数学以亚历山大为中心,达到它的全盛时期。这里有巨大的图书馆和浓厚的学术空气,各地学者云集在此进行教学和研究。其中成就最大的是亚历山大前期三大数学家欧几里得、阿基米德和阿波罗尼奥斯。
& & 欧几里得的《几何原本》是一部划时代的著作。其伟大的历史意义在于它是用公理法建立起演绎体系的最早典范。过去所积累下来的数学知识,是零碎的、片断的,可以比作砖瓦木石;只有借助于逻辑方法,把这些知识组织起来,加以分类、比较,揭露彼此间的内在联系,整理在一个严密的系统之中,才能建成宏伟的大厦。《几何原本》体现了这种精神,它对整个数学的发展产生深远的影响。
& & 阿基米德是物理学家兼数学家,他善于将抽象的理论和工程技术的具体应用结合起来,又在实践中洞察事物的本质,通过严格的论证,使经验事实上升为理论。他根据力学原理去探求解决面积和体积问题,已经包含积分学的初步思想。阿波罗尼奥斯的主要贡献是对圆锥曲线的深入研究。
& & 除了三大数学家以外,埃拉托斯特尼的大地测量和以他为名的“素数筛子”也很出名。天文学家喜帕恰斯制作“弦表”,是三角学的先导。
& & 公元前146年以后,在罗马统治下的亚历山大学者仍能继承前人的工作,不断有所发明。海伦(约公元62)、门纳劳斯(约公元100)、帕普斯等人都有重要贡献。天文学家托勒密将喜帕恰斯的工作加以整理发挥,奠定了三角学的基础。
& & 晚期的希腊学者在算术和代数方面也颇有建树,代表人物有尼科马霍斯(约公元100)和丢番图(约250)前者是杰拉什(今约旦北部)地方的人。著有《算术入门》,后者的《算术》是讲数的理论的,而大部分内容可以归入代数的范围。它完全脱离了几何的形式,在希腊数学中独树一帜,对后世影响之大,仅次于《几何原本》。
& & 公元325年,罗马帝国的君士坦丁大帝开始利用宗教作为统治的工具,把一切学术都置于基督教神学的控制之下。
& & 公元529年,东罗马帝国皇帝查士·丁尼下令关闭雅典的柏拉图学园以及其他学校,严禁传授数学。许多希腊学者逃到叙利亚和波斯等地。数学研究受到沉重的打击。641年,亚历山大被阿拉伯人占领,图书馆再次被毁,希腊数学至此告一段落。 埃及古代数学
& & 埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200年左右,形成一个统一的国家。尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。
& & 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。例如基底直角的误差与底面正方形两边同正北的偏差都非常小。
& & 现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。
& & 埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。
& & 埃及很早就用十进记数法,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。例如111,象形文字写成三个不同的字符,而不是将 1重复三次。埃及算术主要是加法,而乘法是加法的重复。
& & 他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是1的分数)的和。
& & 莱因德纸草书用很大的篇幅来记载2/N(N从5到101)型的分数分解成单位分数的结果。为什么要这样分解以及用什么方法去分解,到现在还是一个谜。这种繁杂的分数算法实际上阻碍了算术的进一步发展。
& & 纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。计算的结果相当于用3.1605作为圆周率,不过他们并没有圆周率这个概念。根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。 欧洲中世纪数学
& &&&中世纪开始于公元476年西罗马帝国灭亡,约结束于15世纪。这一千年的历史大致可以分为两段。十一世纪之前常称为黑暗时代,这时西欧在基督教神学和烦琐哲学的教条统治下,人们失去了思想自由,生产墨守成规,技术进步缓慢,数学停滞不前。十一世纪以后情况稍有好转。
& & 希腊文化通过罗马人传到中世纪的很少,这大部分体现在博伊西斯(约480~524)的著作中。他的《算术原理》大体上是新毕达哥拉斯学派数学家尼科马霍斯《算术入门》的译本,但若干精采的命题均被删去。博伊西斯的《几何》取材于欧几里得《几何原本》,但却完全没有证明,因为他认为证明是多余的。
&&公元529年,东罗马帝国皇帝查士丁尼勒令关闭雅典的学校,严禁研究和传播数学。数学发展再一次受到沉重的打击。此后数百年,值得称道的数学家屈指可数,而且多是神职人员。
& & 号称博学多才的比德是英国的僧侣学者,终生在修道院度过。他的本领是会算复活节(每年过春分月圆后的第一个星期日)的日期,和用手指来计算。稍后的阿尔昆也是著名的英国神学家。781年左右,接受查理曼大帝的聘请,到法兰克王国担任宫廷教师和顾问。他所编的算术书,现在看来是相当粗浅的。热尔贝原是兰斯的大主教,后被选为教皇,改名西尔威斯特二世。他热心提倡学术,对推动“四艺”(音乐、几何、算术、天文)的学习有一定的功劳。
& & 十字军远征()使欧洲人接触到阿拉伯国家所保有古代文化宝藏。他们将大量的阿拉伯文书籍译成拉丁文。于是希腊、印度和阿拉伯人创造的文化,还有中国的四大发明便传到了欧洲。意大利地处东西方交通的要冲,逐渐成为新的经济和文化中心。
& & 12、13世纪欧洲数学界的代表人物是斐波那契,他向欧洲人介绍了印度-阿拉伯数码和位值制记数法,以及各种算法在商业上的应用。中国的盈不足术和《孙子算经》的不定方程解法也出现在斐
波那契的书中。此外他还有很多独创性的工作。
& & 14世纪的法国主教奥尔斯姆引入了分指数记法和坐标制的思想,后者是从天文、地理的经纬度到近代坐标几何的过渡。英国大主教布雷德沃丁的算术、几何、力学的著作影响也很大。欧洲第一本系统的三角学作者是雷格蒙塔努斯。
& & 文艺复兴以后,人类摆脱了中世纪束缚思想的精神枷锁,迎接了一个新时代的到来。 :D:D多谢分享!! 提供好详细啊,谢谢

我要回帖

更多关于 三国时期的灵异事件 的文章

 

随机推荐